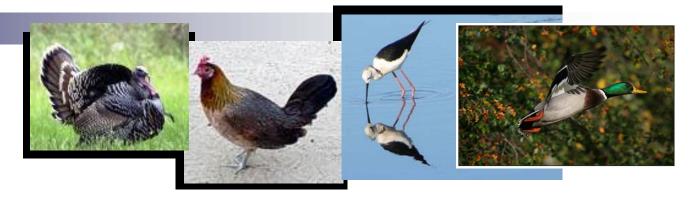
Construction and Selection of Fab antibody library specific to hemagglutinin antigen of H5N1 Avian Influenza Virus

Pannamthip Pitaksajjakul ^a, Taweesak Songserm ^b, Porntippa Lekcharoensuk ^b, Pornsawan Leungwutiwong^a Carlos F Barbas III^c, Pongrama Ramasoota ^{a *}

^a Faculty of Tropical Medicine, Mahidol University, 420/6 Rajwithii road, Rachadhewee, Bangkok 10310, Thailand


^b Faculty of Veterinary Medicine, Kasetsart University, Kampangsan Campus, Nakonpathom 73170, Thailand

^c Department of Molecular Biology and The Skaggs Institute for Chemical Biology, BCC 550, Scripps Research Institute, La Jolla, CA 92037, USA

Topics

- Rationale and Objective
- Materials & Methods
- Results
- Conclusion and further study

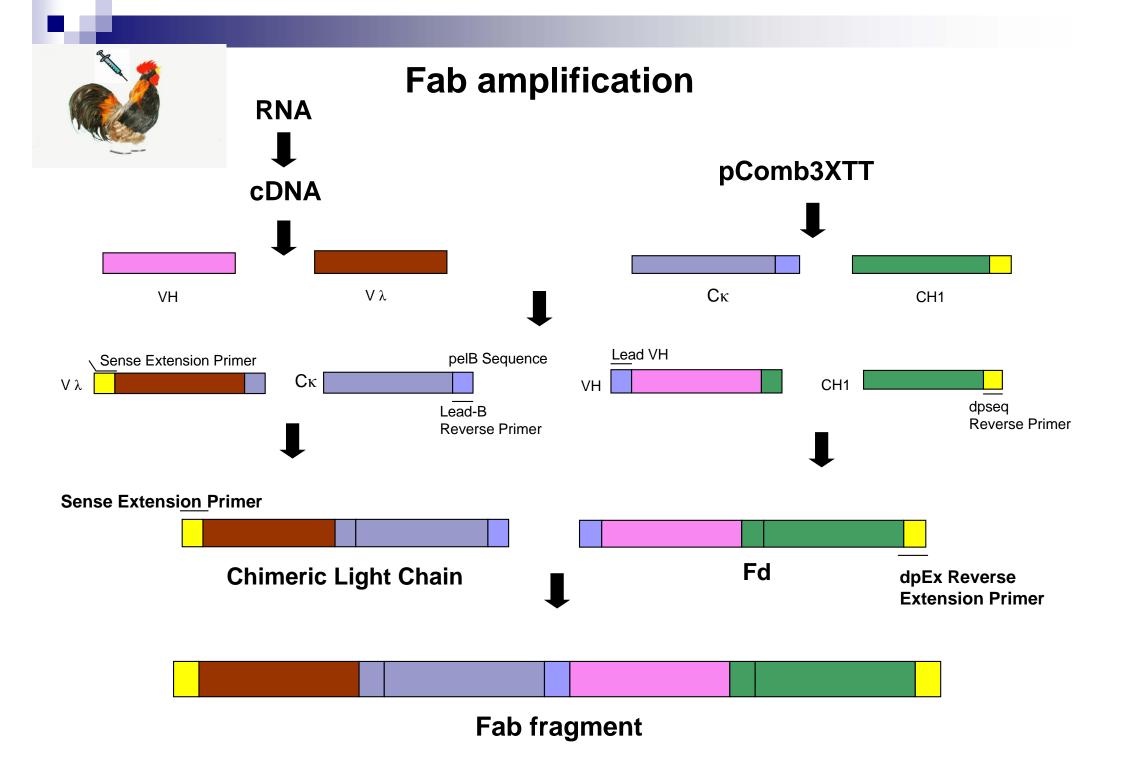
Rationale

- HPAI H5N1 avian influenza virus cause adverse impact on Economic and Public health.
- Most infected human cases have history of close contact with infected chicken
- Rapid detection of H5N1 avian influenza virus in both human and chickens is needed
- Diagnostic test development for H5N1 avian influenza virus is required, and set as high priority national policy
- Monoclonal antibody (Mab) is major reagent for making Diagnostic test

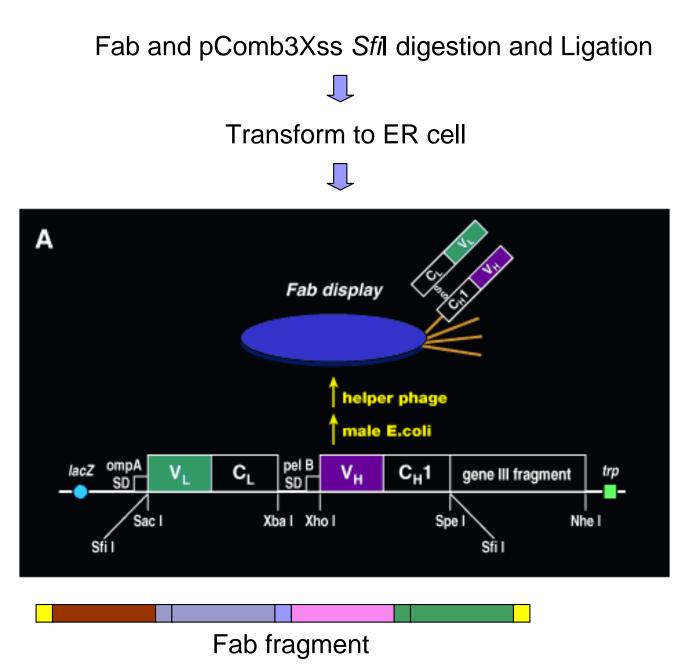
Objective

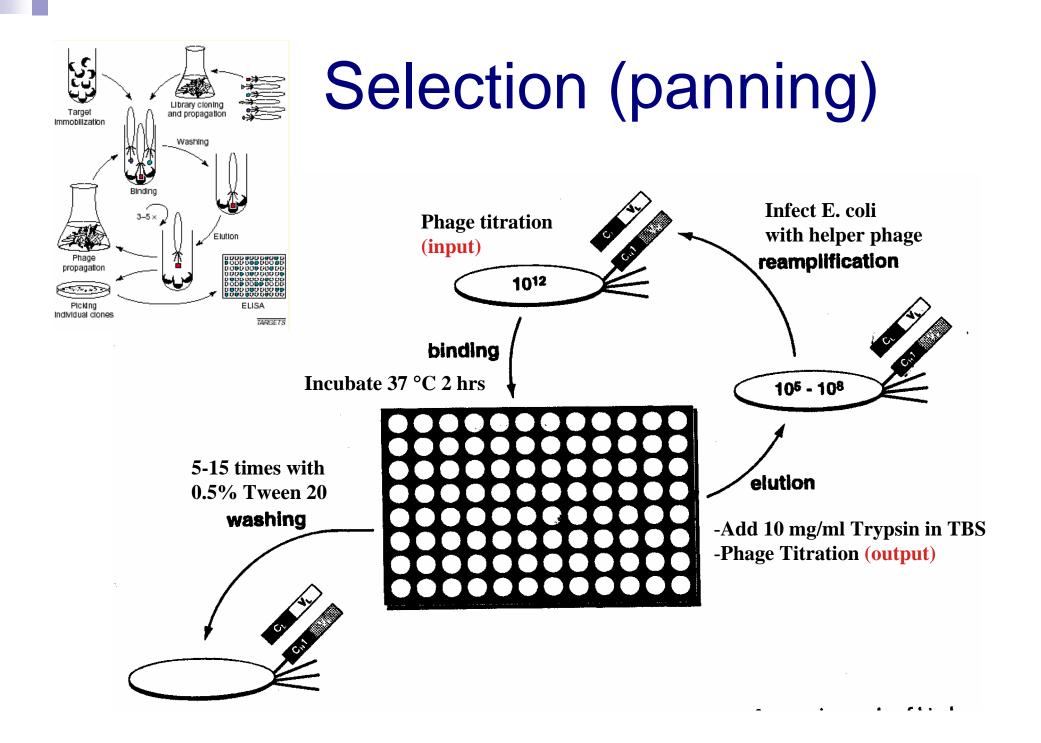
- Construction of Fab antibody library specific to H5N1 Avian Influenza virus
- 2. Selection of Fab antibody specific to Hemagglutinin antigen
- 3. Production of monoclonal antibody specific to Hemagglutinin (H5)
- 4. Further develop as diagnostic test for H5N1

Materials & Methods



Immunized with dead H5N1 (treated with beta-propiolactone) and serum titer checked (titer at 1:64)


Selection


cDNA synthesis

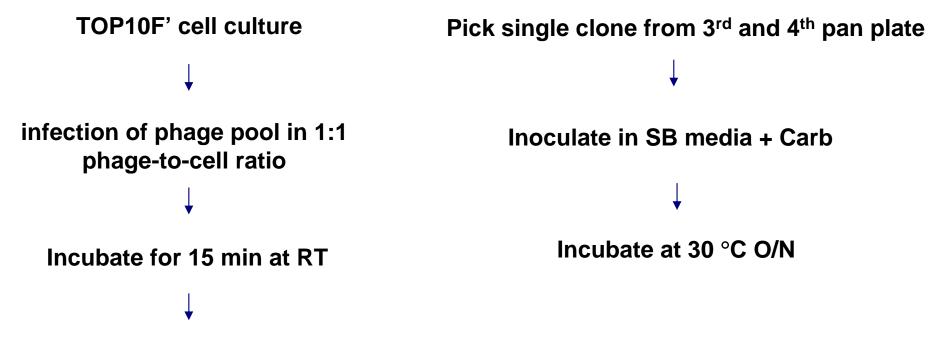
Library construction (= Fab amplification

Fab Library construction

Selection (panning)

1. stringency increased

	Ag coated (ng)	Incubation time	Washing time
1 st round	100	2 hrs	5
2 nd round	100	1 hr	5
3 rd round	50	1 hr	5
4 th round	20	45 mins	5


2. no stringency increased

	Ag coated (ng)	Incubation time	Washing time
1 st round	100	2 hrs	5
2 nd round	100	2 hrs	5
3 rd round	100	2 hrs	5
4 th round	100	2 hrs	5

Fab ELISA (binding specificity test)

Phage pool Fab expression

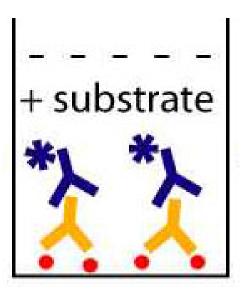
Single clone Fab expression

Add Carbenicillin and incubate at 30 °C O/N

Fab ELISA (binding specificity test)

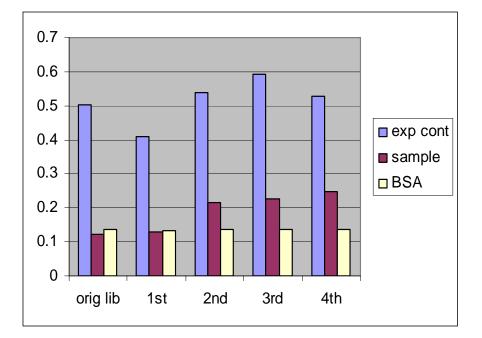
Phage pool Fab expression
 Single clone Fab expression

Dilute the O/N culture (1:100) in SB media + Carb


```
↓
Incubate at 30 °C until OD<sub>600</sub> ~ 0.7
↓
Add IPTG to 0.5 mM (final conc.)
↓
Incubate at 30 °C O/N
```

Fab ELISA (binding specificity test)

Sonication for breaking the cell


Centrifuge at 3,500 rpm for 20 min

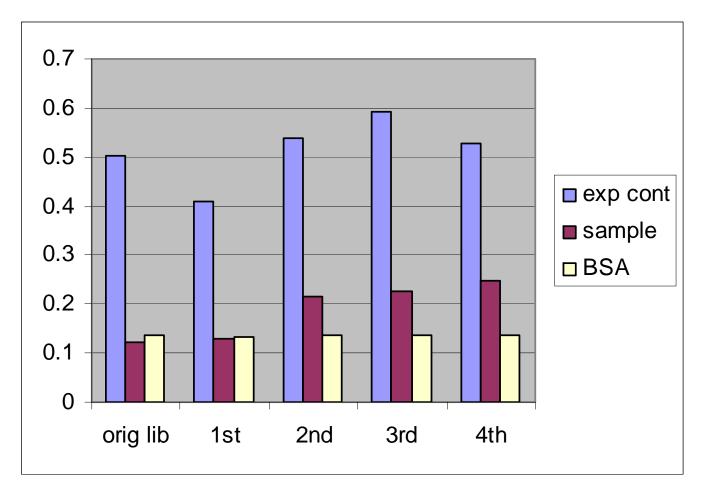
Use Fab supernatant for ELISA

Signal development (ABTS)

Image: Anti-HA antibody –HRP
 Image: Fab supernatant
 Image: H5 antigen

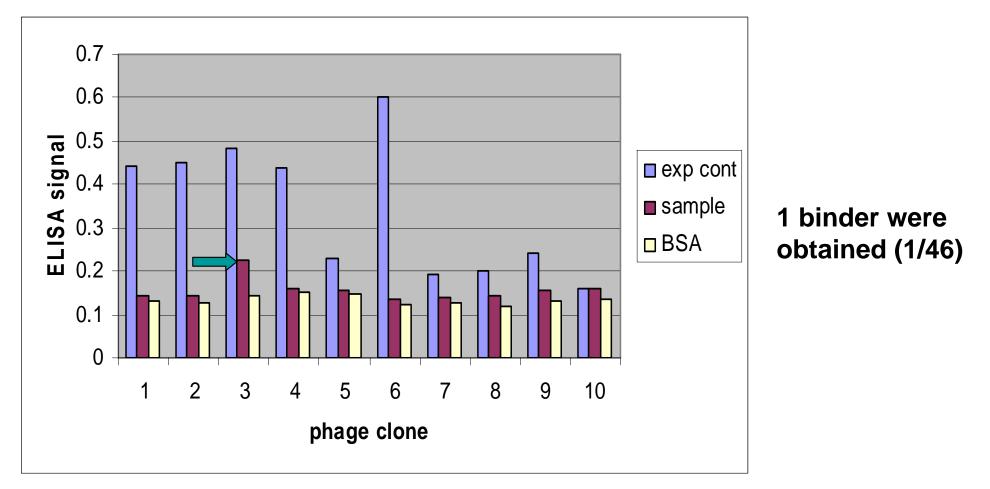
1. Panning result – stringency increased

	Input phage	Output phage
1 st round	1.1× 10 ¹²	3.0 × 10 ⁶
2 nd round	7.5 × 10 ¹¹	2.0 × 10 ⁵
3 rd round	6.25 × 10 ¹¹	1.8 × 10 ⁶
4 th round	5 × 10 ¹¹	3.2 × 10 ⁵

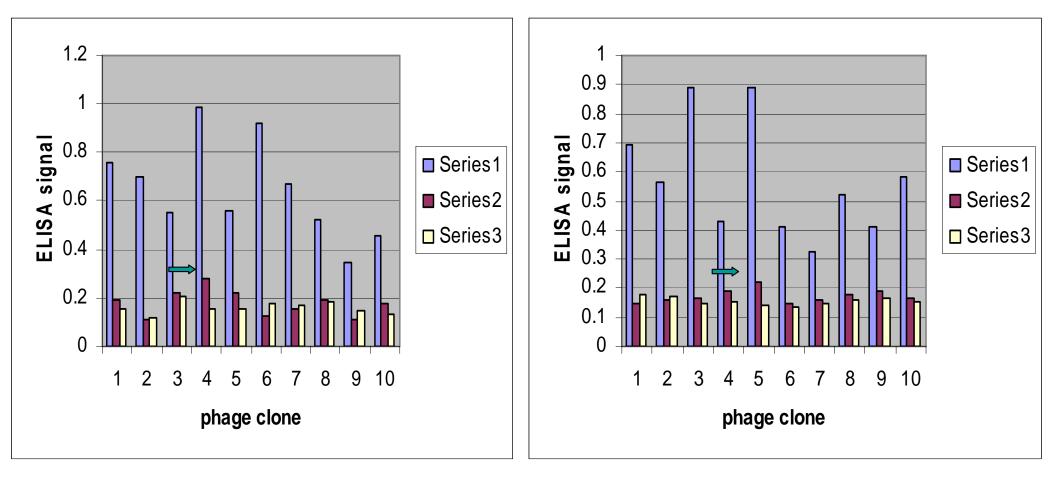

- 46 clones were selected from 3rd round panning
- 20 clones were selected from 4th round panning

2. Panning result – no stringency increased

	Input phage	Output phage
1 st round	1.5 × 10 ¹²	2.5 × 10 ⁵
2 nd round	1.25 × 10 ¹²	8.0 × 10 ⁵
3 rd round	8.75 × 10 ¹¹	1.8 × 10 ⁶
4 th round	1.25 × 10 ¹¹	3.5 × 10 ⁶


- 10 clones were selected from 3rd round panning
- 10 clones were selected from 4th round panning

3. Fab ELISA – phage pool Fab



Fab ELISA from some of single clones from 3rd round panning

(increased of stringency)

- Fab ELISA from some of single clones from 3rd and 4th round panning (no increased of stringency)
- 2 binders were obtained (1/10), (1/10)

Conclusion

- Three binders were obtained, but not strong enough
 - Original source of B cell from chicken spleen
 - Chicken serum titer is not high enough (1:64)
 - □ Small size of library (library construction problems)

Further study

- Immunized the H5N1 antigen
- Construct new library, Panning
- Screening more clones
- Repeat ELISA

Acknowledgement

TRF Research Scholar (ทุนเมธีวิจัย 2548-2551)
 (Thailand Research Fund)

Commission on Higher Education, Thailand

The Scripps Research Institute, USA.

THANK YOU

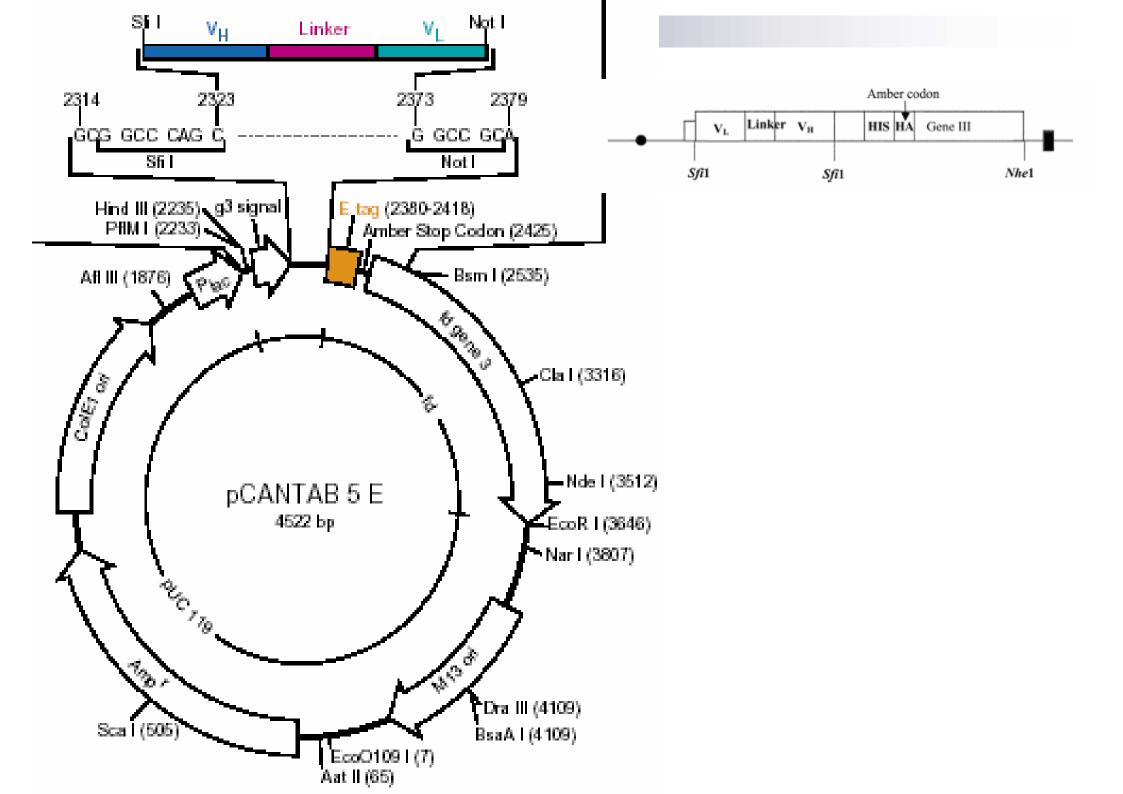
Technology for producing antibody

Inject purified Ag Port	Pro&con	Hybridoma technology 1970	Phage display technology 1990	Immunisation with target molecule
solare spisen cells a los		(Tissue culture based)	(Genetic engineering)	(a) Post-immunisation
Select hybridoma cels	Process	In vivo	In vivo / In vitro	library
	Antigen required	milligrams	micrograms	V-gene sequences
Seed individual cells into wells	Time required	2-3 months	2-3 weeks	(B-cell - already arranged IgG mRNA)
	Sensitivity, &	high	high	
Culure cells	Specificity			
Athodies cre secreted	Stability	moderate	high	PCR amplification
into culture medium Test hybridomo culture medium for MAb that	Labor intensive	high	moderate	scFv/Fab/dsFv etc constructs
Propagate positive clones	Reagent Cost	high	Low	Packaging into phage
Freeze away a cel stock	Equipment Cost	high	Low	

scFv Fab dsFv

Antibody Library

scFv	Fab
Better tolerated by bacteria	More difficult to synthesize
Less likely to be degraded	More likely to be degraded
Can form dimers	No dimerization
Single protein molecules	Two protein molecules
Less stable	More stable
A fraction of expressed scFv can be non-functional	Tends to be more functional
DNA insert up to 700 bps	DNA insert > 1500 bps


Dimerization can be reduced by increasing linker peptide to be more than 20 amino acids

Influenza test kit in the market

Name	Type	Detect	Sense/Spec (%)
Accepta (UK)	Immuno chromatography	A + B	99/88
		A	
Innova		A	
Biotech (TH)			
Glumpine (Jordan)		H5	

Application of engineered antibody from phage display

	Clinical Application	References
Diagnostic test	Constructed scFv against WSSV with high specificity for diagnostic kit development	Dai et al., 2003
Pathogen neutralizing	Antibody binding (Fab) can directly and effectively block the activity of pathogens, such as, Chlamydia trachomatis	Wilson et al., 2004
Antiviral Therapy	Synagis, humanized antibody used for the prevention of severe respiratory syncytial virus	Meanwell and Krystal, 2000
Cancer therapy	Blocking angiogenesis to prevent the establishment and growth of tumors	Sanz et al., 2002; Marty et al., 2002
Intracellular antibodies	Ab fragment can be expressed as intracellular proteins, typically scFv, termed intrabodies, and equipped with targeting signals either to neutralize intracellular gene product or target cellular pathway, e.g. huntingtin can be down-regulated by antibodies	Lecerf et al., 2001

