

Incidence and Risk Factors of Hookworm Infection in Population at Baan Tungsorhongsar, Thakadan, Sanamchaikhet, Chachaoengsao

Introduction Hookworm infection is one of the most common chronic parasitic infection. - 740 million cases worldwide - Most are impoverished people The greatest number of hookworm cases occurred in Asia, followed by sub-Saharan Africa.

(de Silva et al., Trends Parasitol 2003; 19:547-51)

There are 2 species of human hookworms

- Necator americanus
- Ancylostoma duodenale

World-wide distribution of endemic Hookworm (Necator americanus) . (Mississippi Historical Society)

3 species of animal hookworms -Ancylostoma ceylanicum -Ancylostoma caninum -Ancylostoma braziliense Cause zoonotic disease in human - Cutaneous larva migrans (Prociv et al., Acta Trop 1996; 62:23-44)

Hookworm infection is still a major public health problem in Thailand.

Hookworm infection rates in rural areas of Sakaew, Nan and Kanchanaburi were 5.0%, 25.5% and 46.2%, respectively.

(Maipanich et al., J Trop Med Parasitol 2004; 27:51-8)

Patients with chronic hookworm infection have greater risk of - Iron-deficiency anemia - Growth retardation in children - Low birth weight -Impaired lactation -Increased maternal mortality

A cross-sectional study in 2005 at Tungsorhongsar, Chacheongsao province Prevalence of hookworm infection was 12%.

Chacheongsao

1:6,281,457

 Information regarding epidemiology is required to design the more effective public health intervention.
 True risks can not be obtained from cross-sectional studies.

Objectives

To identify the incidence and risk factors of hookworm infection.
To identify species of hookworm using PCR technique.

November, 2005 February, 2007 Population

November, 2005 February, 2007 Population

November, 2005 February, 2007 Population

Stool examination

-Simple smear

-Kato thick technique

Species identification PCR Amplification

RTHHW1F GAT GAG CAT TGC WTG AAT GCC G**RTHHW1R** GCA AGT RCC GTT CGA CAA ACA G

Conditions:	Denature Annealing Extension	94°C 2 min 64°C 1 min 72°C 2 min	1 cycle
	Denature Annealing Extension	94 °C 30 s 64 °C 30 s 72 °C 30 s	> 45 cycles

Final extension 72 °C 7 min

(Traub RJ et al., unpublished method)

PCR amplification of rRNA gene

485 bp380 bp= Necator americanus= Ancylostoma spp.

DNA sequencing

M 13 620 171 1109 1176 1021

Species identification of hookworm by using PCR technique

Standardized Questionnaire
Demographic data
Risk behavior
Health status

 To study the distribution of hookworm infection in the village, Geographic Information System (GIS) Technology was performed.

Data analysis

 Statistical analysis of risk factors was performed using univariate and
 Poisson-multivariate analysis by
 STATA program.

Results

Baseline survey, 515 hookworm negative subjects

 352 (68.34%) were enrolled into the follow-up study.
 Migration caused the decrease in numbers of population.

Results

33 (9.37%) were positive for hookworm infection.

The incidence rate of hookworm infection was 7.5/100 person-years.

Species identification

Necator americanus 90.4%

Ancylostoma ceylanicum

Ar. 1.

Ancylostoma caninum / 1.9%

Not determined 1.9%

		10 .	20 	30 	4 0 	50 	60 	70 .	80 	90 	100
A. <u>cerlanicum</u> Contig620		AG TCTT CAG G	AC TTTG TCG	GGAAGG TTGG (GAG TATCGCC	CCCCGTTA	LAGCC CTACG	TGAGG TGTC1	FA TGTG CAG CE	AA GAGC CGTTU	C TGGG TG
Cantigli (6											
		110 .	120 	130 	14 0	150	1 60	170 	180 	190 	200
A. geylanigum Contig620 Contig1176	GCGGCA	STGATTGCTG	TG CGAA GTT A GTC CA AAAA GCC	CGC GTTTCGC' CGTTTG TACA' CGTTGG GGCA'	PGA GOT TTAG PGG GOT OTC - PGG ACO TTC -	ACT TGA TGA ATC TGA TGA ATC TGA TGA	AG CAT TGC AT AG CAT TGC TT AG CAT TGC TT	GAATG CCG CC GAATG CCG CC GAATG CCG CC	TTACTGCTT TTACTGCTT TTACTGCTT	STGTTG GTG GT STGTTG GTG GT STGTTG GTG GT	ITGAGCAT ITGAGCAT ITGAGCAT
,											
		210 .	220 	230 	2 4 0 	250 	260 .	270 .	280 	290 	300
A. <u>cerlanicum</u> Contig620 Contig1125	TAGGC TE TAGGC TE	AACGCC TAG T AACGCC TAG T AACGCC TAG T	GC GGCA CCT GC GGCA CCT GC GGCA CCT	G-TCTGTCAGI GGTCTGTCAGI G-TCTGTCAGI	Garace TTRE Garace TTRE 344 acc TTRE	itga tot go: itga tot go: itga tot go:	iracg cggac iracg cggac iracg cggac	GC CAG TACAG GC CAG TACAG GC CAG TACAG	CAATAACTT. CAATAACTT.	FT TACG TITA? FT TACG TITA? FT TACC TITA?	ATGTTTGC ATGTTTGC
Conciginito			.acaantest	<u>9-1619 1689</u> .		. 1961 191 99.		ige eng tristik			11011100
		310	320	330	340	350	360	370	380	390	400
A. gevlanicum	AGAA <mark>TC</mark> (GTCACAATC	GAC TAG CTTC <i>i</i>	AG <mark>C GAT</mark> GGAT	I CGG TCGAT.	· · · · · · · · <mark>FC GCG TAT C</mark> G	a <mark>t</mark> Gaaaaa <mark>C</mark> o	GAGCTAGCT	GC GTTA TTTA(CACGAAT
Contig520 Contig1176	AGAATC(AGAATC(STGACTTIA I STGACTTIA I	GTCACAATC GTCACAATC	GAC TAG CTTC <i>i</i> GAC TAG CTTC <i>i</i>	ag <mark>c gat</mark> ggat agc gatggat	CGG TCGAT.	IC GCG TAT CG IC GCG TAT CG	a <mark>t Gaaaaa C</mark> o at Gaa aaa Co	SCAGCTAGCT SCAGCTAGCT	SC GTTA TTTAC	CACGAAT
	I	4 <u>1</u> 0	420	430	440	450	460	470	480 I I	490	500
A. ceylanicum	TG CAGA(CG CTTA GAG T	GG TGAAATT	TTGAAC G <mark>C</mark> ATi	AGC GCC GTTG	GGTTTTCC	CTTCG GCA CG	TC TGG TTC -A	\GGGTTGTTT	TATCTACTA	AGTGTAG
Contig520 Contig1125	TG CAGA(CG CTTA GAG T CC CTTA GAG T	GG TGAAATT ICC TCAA ATT'	TTGAAC GCATI TTGAAC GCATI	AGC GCC GTTG AGC GCC GTTG	GGTTTTCCC	CTTCG GCA CG	TC TGG TTC -P	GGGTTGTTT CCCTTCTTT	ATATCTACTA ATATCTACTA	lagtetag 'agtetag
Concigin 10	13 GROTH	sa a i inana i					1100000000				
	1	510	520	530	540	550	560	570	580	590	600
A. geylanicum	CTTGTG	ACACTG TTT G	TC GAAC GGCi	ACTTGC TTAT	AGCAATTCCC	GTTCTAGA	. ICAGAATATA	.TTGCAACA TO	STACGTTAGC:	IGGCTAGTTT	SC TRACGT
Contig620	CTTGTG	ACACTG TTTG	TC GAAC GGC	ACTTGCACTT	FG - ATC CTTT	CATGAA TG	CC GGC CTG CC	CC TTT TTT T	TAAAG GAAAA	AAAAAA	
Contig1176	CTTGTG	acacts TITS	TUGAAU GGU:	autiguatit	IG-AICTIT	igutnaa tu	CUUGGATG TU	CN TITTICU	aaaa		
		610	620	630	640	650	660	670	680		
ð særlanisum	acerre	. samcaracra	 aa erree rrre:	 TTC CTC CTC2 ;	 	 . cac mm aca	. Sa commerce	. .cceme.ccma.o	 	2	
Contig620										-	
Contig1176										-	

	10	20	30	40	50	δ0	70	80	90	100
			 							
A. caninum Contig1109	TGCTAGTCTTCACG2	ACTTT GT CGGG	RAGG <mark>TT</mark> GGG	AGTAT CGCCC	ACCGTTACAG	CCCTACGTAA	GGT GT CTAT G	FGCAGCAAGA) CGGCTTTT	GT C GTTACT G -T CT CTTTTT	GGT GGC CTTATA
	110	120	130	140	150	160	170	180	190	200
A. caninum Contig1109	GGCRATGA-TTGCT) TGCARRARTTACA	TGCGAAGTTC CTCCGGCCC	GCGTTTCGC GTTTGTACA	TGAGCTTTAG TGGACTCTCR	RCTTGATGAG LTCT-GATGAG	CATT GCAT GAN	AT GCCGCCTT2 AT GCCGCCTT2	ACT GCTT GT G' ACT GCTT GT G'	ITGGTGGTTG ITGGTGGTTG	AGCATT AGCATT
	210	220	230	240	250	250	270	280	290	300
A. caninum Contig1109	AGGCTARCGCCTGR: AGGCTARCGCCTGR:	 FGCGGCACCTG FGCGGCACCTG	T CT GT CRGG T CT GT CRGG	 RARCCTTRAT RARCCTTRAT	GRT CT GCTAR	CGCGGACGCCC CGCGGACGCCC	 AGTACAGCAA AGTACAGCAA	II FARCTTTTTA FARCTTTTAR	 CGTTTAAT GT CGTTTAAT GT	 TTGCAG TTGCAG
	310	320	330	340	350	320	370	380	390	400
A. caninum Contig1109	AAT CGT GACTTTAC) AAT CGT GACTTTAC) AAT CGT GACTTTAT)	 FT CA CAAT C GA FT CA CAAT C GA	ICTAGCTTCA ICTAGCTTCA	 GCGAT GGAT C GCGAT GGAT C	GGTCGATTCG GGTCGATTCG	 CGTAT CGAT G CGTAT CGAT G	 ARARACGCAG ARARACGCAG	 CTAGCTGCGT CTAGCTGCGT	II FATTTACCAC FATTTACCAC	 GAATTG GAATTG
	410	420	430	440	450	450	470	480	490	500
A. caninum Contig1109	CAGACGCTTAGAG-: CAGACGCTTAGAGG: CAGACGCTTAGAGG:	 GGTGAAATTI GGTGAAATTI	T GAACGCAT: T GAACGCAT: T GAACGCAT:	. RG-CGCCGTT RGGCGCCGTT	GGGTTTTCCC GGGTTTTCCC	. TTCGGCA-CG TTCGGCAGCG	 FCTGGTTC-A FCTGGTTCCA	 GGGTT GTTTA: GGGTT GTTTA:	 FAT CTACTAC FAT CTACTAC	 AGT GTA AGT GCA
	510	520	530	540	550	560	570	580	590	600
A. caninum Contig1109	GCTT GT GGCR CT GT GCTT GT GGCR CT GT GCTT GT GGCR CT GT	 TTGTCGRACGG TTGTCGAACGG	GACTTGCAT CACTTGCAC	 TTRGCGRTTC TT-G-GRT	CCGTTCTAGA	 T <u>CRGRATATA'</u> TCRATGCC'	 TGCRRCRTG -G-RRTG	 TACGTTAGCT) C-CNTT	 GGCTAGTTTG TT-TTTT	 CTARCG CTRR
	510	620	5 30	54 0	δ50	660	670	680	690	700
A. caninum Contig1109	TGCRCTGRATGRCR RRRARRAR	 GCRARCTCGTT MRRRR	 GTT GCT GCT 	 GAATCGTTTR	CCGACTATAA	 RRCGTTTTGG	 CRGTGGCTRG	 <mark>Fat</mark> gacaacgi	 AT GTTT CT GT' 	 TATTTG
	710	720	730	۱.						
A. caninum Contig1109	CAAT GCAACCT GAG	CT CA GGC GT GA	CTACCCGCT	<u>GR</u> 						

Univariate and multivariate analysis of the risk factors of hookworm infection

Factor	Subjects (Person- years)	No.of Hookworm Infection (Incidence rate)	Crude Incidence rate ratio (95% CI)	Adjusted IRR (95% CI)	P-value
Age				1.021	.113
				(.995-1.047)	
Wash han	ds before meal				
Yes	155	12(.077)	1.006	1.187	.754
No	260	20(.076)	(.448-2.161)	(.405-3.478)	
Wash han	ds after defecated				
Yes	315	22(.069)	.698	.639	.397
No	100	10(.10)	(.317-1.652)	(.227-1.799)	
Defecated	in toilet				
Yes	351	26(.074)	.802	.656	.471
No	65	6(.092)	(.323-2.384)	(.209- 2.06)	
Barefoot					
Yes	296	28(.094)	2.837	11.686	.022*
No	120	4(.033)	(.992-11.134)	(1.431-95.378)	

Univariate and multivariate analysis of the risk factors of hookworm infection

F	actor	Subjects (Person- years)	No.of Hookworm Infection (Incidence rate)	Crude Incidence rate ratio (95% CI)	Adjusted IRR (95% CI)	P-value
Buffa	aloes					
	Yes	15	6(.4)	6.539	10.103	.001*
	Νο	376	23(.061)	(2.177-16.52)	(2.455-41.57)	
Duck	Υ.					
	Yes	14	1(0.071)	.961	2.58e-06	.989
	No	377	28(.074)	(.02-5.817)	(0)	
Chic	ken					
	Yes	315	26(.082)	2.091	2.433	.186
	No	76	3(.039)	(.64-10.793)	(.65-9.105)	
Fish						
	Yes	85	4(.047)	.576	.748	.619
	No	306	25(.081)	(.145-1.668)	(.239-2.33)	

Univariate and multivariate analysis of the risk factors of hookworm infection

F	actor	Subjects (Person- years)	No.of Hookworm Infection (Incidence rate)	Crude Incidence rate ratio (95% CI)	Adjusted IRR (95% CI)	P-value
Dog						
	Yes	285	22(.077)	1.168	2.155	.240
	No	106	7(.066)	(.482-3.239)	(.597-7.77)	
Cat						
	Yes	126	5(.039)	.438	.289	.101
	Νο	265	24(.090)	(.13-1.171)	(.065-1.273)	
Pig						
	Yes	45	3(.066)	.887	.551	.441
	No	346	26(.075))	(.171-2.894)	(.121-2.506)	
Cow						
	Yes	130	12(.092)	1.417	2.267	.077
	Νο	261	17(.065)	(.617-3.148)	(.14-5.623)	

Discussions

The incidence of hookworm infection was high in this rural area of Thailand.
Barefoot walking and having buffaloes raised by their houses increased risk of hookworm infection.

Discussions

Discussions

From GIS, there were different levels of the intensity of hookworm infection in different areas. The areas showing high prevalence of hookworm infection were related with having buffaloes.

Conclusion & Suggestions

Public health intervention should be addressed on the prevention of hookworm infection by;

- Sanitation

Changing habit of barefoot walking
Avoiding soil exposure in the areas with high rates of hookworm infection

Conclusion & Suggestions

In addition , animal hookworms i.e. A. ceylanicum and A. caninum could be found in this population suggesting zoonotic infections.

GIS showed different levels of the infection intensity which could guide the intervention program in each area.

Acknowledgement Participants in Baan Tungsorhongsar village Phramongkutklao Research Fund

Collaborations

Phramongkutklao College of Medicine – The fifth-year Medical cadets

- (29^{th})
 - Wongwaris Aphijirawat
 - Vittaya Jiraanankul
 - Kuntaphol pengpan
 - Pipit Burasakan
 - Paiboon Kuhapensang

Department of Parasitology

- Saovanee Leelayoova
- Paanjit Taamasri
- Mathirut Mungthin
- Phunlerd Piyaraj
- Rommanee Khositnithikul
- Tawee Naaglor

- Department of Military and Community Medicine Ram Rangsin Pote Aimpun School of Veterinary Science, the University of Queensland Rebecca J Traub