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Talk outline

• What we can learn from detailed studies of the host response to 
infections.

• How new broader immune tools can be applied (Covid, gut 
inflammation).

• Where this could go in the future.



Immunology and COVID-19 outcomes



Front line workers – innate immunity

Blood vessel

Virus

Airway lining cells



Local heroes– the T cell response

Lymphoid tissue

T cell expansion

Local killing and help

Antigen presenting 
cells



Broader cover– the B cell response

Lymphoid tissue

Development of
Antibody secreting B cells

Circulating IgG

Mucosal IgA



Setting the balance between immunity and immune pathology

Immunity
Immune mediated

pathology

Host factors
Genetics

Sex
Age

Viral factors
Genetics

Dose
Route

Rapid clearance of 
infected cells

Inflammation
Tissue damage/dysfunction



Setting the balance between immunity and immune pathology

Immunity
Immune mediated

pathology

Host factors
Genetics

Sex
Age

Viral factors
Genetics

Dose
Route

Rapid clearance of 
infected cells

Inflammation
Tissue damage/dysfunction

HIV
Hepatitis C
Hepatitis B
Influenza
SARS
LCMV (model)
etc



Setting the balance between immunity and immune pathology
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Integration of innate and adapative immunity



Cohorts and sample collection 

Vaccine Studies

Oxford COVID-19 immunology work packages

Clinical Trials (eg
plasma therapy, 
anti-TNF)

Work Package 1-
Humoral immunity

• Antibody tests
• Therapeutic 

monoclonal 
antibodies

Work Package 2-
Genomics

• Multi-omics of 
patient samples

Work Package 3-
Inflammatory 
response

• Innate immunity in 
COVID-19 
pathogenesis

Work Package 4- T cell 
immunity

• T cell responses to 
SARS-CoV-2

Work Package 5- Data integration and analysis

Integration of experimental and clinical datasets



Work Package 1- Humoral immunity

Understanding and utilizing the human antibody response to SARS-CoV-2

Objectives:
• Development of sensitive and specific antibody tests (ELISAs) that can 

be utilized at scale (high throughput)
• Development of assays to detect neutralizing antibodies to SARS-CoV-2
• Understanding the prevalence of infection across populations
• Development of monoclonal antibodies
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Understanding and utilizing the human antibody response to SARS-CoV-2

Objectives:
• Development of sensitive and specific antibody tests (ELISAs) that can 

be utilized at scale (high throughput)
• Development of assays to detect neutralizing antibodies to SARS-CoV-2
• Understanding the prevalence of infection across populations
• Development of therapeutic monoclonal antibodies



Ability of antibodies to deal with variants

Good neutralization but impacted by 
mutation…
• Supasa et al Cell 2021
• Zhou et al Cell 2021
• Dejnirattisai et al Cell 2021
• Liu et al Cell 2021

Variation affects the binding of 
antibodies at very specific sites in the 
spike proteinScreaton and Stuart labs



Current status of antibodies in UK HCW: pre and 
post omicron wave

Hornsby et al, submitted



Current status of antibodies in UK HCW: pre and 
post omicron wave

Importance of looking mucosally Hornsby et al, submitted



Work Package 4- T cell immunity

Define T cell responses to SARS-CoV2 to support developments in diagnostics, 
vaccination and therapeutics

Objectives:
• Define immunogenic and protective regions of SARS-CoV2 
• Track antiviral T cells in blood and lung during acute infection and define 

correlates of protection for  vaccination
• Define associations between T cell responses and clinical outcomes and risk 

groups (eg multimorbidity, ageing, bacterial co-infection) COVID19

Control



PITCH Consortium 
Protective Immunity from T cells to Covid-19 in Healthcare workers
Aim to provide evidence of the mechanisms of immunity to underpin vaccine effectiveness data 
from SIREN

Extension of the UK SIREN Study (Antibody, PCR & Vaccine Efficacy 
in 50,000 healthcare workers)

Dept of Health & Social Care Funded

• Prospective longitudinal cohort study in 5 sites 
 Oxford (Paul Klenerman, Susie Dunachie, Ellie Barnes, Philippa Matthews, 

Chris Conlon, Katie Jeffrey)
 Liverpool (Lance Turtle)
 Sheffield (Thushan de Silva, Sarah Rowland Jones)
 Birmingham (Alex Richter)
 Newcastle (Chris Duncan, Rebecca Payne)

PHE (Susan Hopkins, Meera Chand, Victoria Hall)

• 2074 Healthcare workers recruited to date



Baseline characterisation of T cell immunity to mild disease

Assay development. T cells can help 
control Covid-19 even without 
antibodies
• Ogbe et al Nature Comms

Baseline immunity predicts 
durability at 6 months
• Tomic et al Nature Comms

Responses to natural infection 
as comparator to ChAdOx trial
• Folegatti et Lancet 2020

Presenter Notes
Presentation Notes
A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.
�



Later characterisation of T cell immunity post vaccine

Moore et al, in press 2023

Presenter Notes
Presentation Notes
A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.
�



Later characterisation of T cell immunity post vaccine

Explore further with SEACOVARIANTS grant in SE Asia 

Presenter Notes
Presentation Notes
A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.
�



Work Package 2- Genomics

Generating a Blood and Tissue COVID-19 Multi-omic Atlas

Objectives: 
• Define the underlying processes which drive distinct outcomes for patients 

with COVID-19
• Define how host genetics controls these changes at a single cell level
• Look deeply into the lung and respiratory tract to address the underlying 

disease that we need to treat
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CITE-seq pre-processing

Bulk RNA-seq analysis

Genetic analysis

CyTOF analysis

FACS analysis

CITE-seq integration &
alignment

timsTOF analysis

luminex analysis

CITE-seq clustering &
differential modelling

Repertoire analysis

Initial sample processing - CCVTM/WIMM
Experimental work - WHG/WIMM/TDI/Kennedy
H&S - working with blood from COVID-19 cases for lab/data generation
Data generation at unprecedented scale (single cell resolution); breadth of
assays and platforms (immune, multi-omic); novel method development
Multiple data generation and analysis teams involving 110+ researchers,
30+ PIs, 6 institutes across Medical Sciences and Maths

Primary Analysis Teams
PI leads, typically 3-6 team
members (all grades), open

calls within COMBAT

Project manager

Raw & processed data
deposited; access to

clinical data and
deposited datasets

External
datasets

Data Mining Team Clinical Phenotyping Team
- case definitions, data quality control,
interface with local clinical teams

Cohorts & sample collection

Integrative Data Analysis Team
- maximising multi-modal data typesAll data inputed for

integration and analysis

Data Management Team
- sample ID system, metadata, deposition, data warehousing,
high peformance compute workspace
- governance, data security and sharing within COMBAT,
Oxford Immunology Consortium and community (data releas-
es & deposition)

ModellingMachine
learning

Data visualisation Systems
biology

Data generation, analysis & management



Dealing with multi-omics data

Multiple parallel datasets

Carefully collected 
clinical cohort

LumpingSplitting

Explore specific hypotheses
Functional studies
Classic route to mechanisms

“Unbiased”
approach

Data integration
Tensor deconvolution
New route – new hypotheses



Dealing with multi-omics data

Multiple parallel datasets

Carefully collected 
clinical cohort

LumpingSplitting

Explore specific hypotheses
Functional studies
Classic route to mechanisms

“Unbiased”
approach

Data integration
Tensor deconvolution
New route – new hypotheses

IL6 pathway
GM-CSF pathway
AP-1 signalling



COVID-19 – COMBAT and CITEseq

836, 148 cells analysed
Around 130 distinct clusters annotated



• Cells are combined with Gel Beads, master mix, and partitioning oil 
➝ nanolitre-scale GEMs (Gel Beads-in-emulsion) 

• Cells delivered at limiting dilution – majority (~90-99%) of GEMs 
contain no cell, while remainder mostly contain a single cell

Single cell RNASeq Step 1 – GEM generation 
and cell barcoding

Presenter Notes
Presentation Notes
Cells partitioned into nanolitre-scale GEMs
Master mix contains reverse transcription reagents
Forms nanolitre-scale droplets
Microreactions



12. Visualise clusters – UMAP, tSNE

Final key steps of a general scRNA-seq 
analysis workflow

Presenter Notes
Presentation Notes
Clustering was prior to stringent filtering



~836,000 cells

UMAP of all PBMCs

B and 
plasma 
cells

T and NK 
cells

Monocyte
s and cDCs

Other e.g. pDCs, 
megakaryocytes, 
erythrocytes, and 
progenitor cells



Linking scRNASeq and clinical outcomes: Loss of specific peripheral blood cell 
subsets in severe COVID-19/flu

Mann-Whitney test or
One-way Kruskal-Wallis test

Data from COMBAT consortium



Loss of specific T cell subsets in severe COVID-19/flu

Mann-Whitney test or
One-way Kruskal-Wallis test

Data from COMBAT consortium



Example - Genes upregulated on MAIT cells

Upregulated genes include C-type lectin domain-containing proteins (KLRB1) cytokine and chemokine 
receptors (IL7R, IL23R, CXCR6, CCR6), transcription factors (RORC, FOS, JUN), TRAV1-2, and the 
activation markers and DPP4 (also MERS-CoV receptor ).



Modified from: Garner, Klenerman, and Provine, Front Immunol, 2018

MAIT cells: innate-like T cells that display TCR-
dependent and –independent activation

• Semi-invariant αβ TCR

• Recognize riboflavin 
metabolites presented by 
MR1 (microbe derived)

• Predominantly CD8+ with 
a stereotyped phenotype

• Mixed Tc1/Tc17 response

• Potently activated by 
cytokines independent of 
TCR



Mucosa-Associated Invariant T cells (MAITs)

Nick Provine (Ann Rev Immunol 2020)



Mucosa-Associated Invariant T cells (MAITs)

Nick Provine (Ann Rev Immunol 2020)

Respond to
Microbial 
Ligand

Respond to viruses



MAIT cell effector responses are governed by the  
integration of inflammatory and TCR signals

Provine and Klenerman, 
Ann Rev Immunol, 2020



Do MAIT cells offer protection against severe 
influenza challenge (PR8)?

Van Wilgenburg/Loh Nature Comms 2018



Example - Genes upregulated on MAIT cells

Upregulated genes include C-type lectin domain-containing proteins (KLRB1) cytokine and chemokine 
receptors (IL7R, IL23R, CXCR6, CCR6), transcription factors (RORC, FOS, JUN), TRAV1-2, and the 
activation markers and DPP4 (also MERS-CoV receptor ). Also strong activation (CD69)



T cells: Association with death in ICU

Youngs, Provine et al, 
PLOS Pathogens Sept 2021



T cells: Association with death in ICU

Youngs, Provine et al, 
PLOS Pathogens Sept 2021



T cells: Association with death in ICU

Youngs, Provine et al, 
PLOS Pathogens Sept 2021



Single-cell RNASeq and multi-omics approaches

• Allow an “unbiased” screen
• Allow exploration of cellular functions/pathways to block
• Allow interrogation of antigen-specific responses
• Can be used in tissue samples



Single-cell RNASeq and multi-omics approaches

• Allow an “unbiased” screen
• Allow exploration of cellular functions/pathways to block
• Allow interrogation of antigen-specific responses
• Can be used in tissue samples
• But…
• Are expensive
• Need computational input (getting easier)
• Need a simple question and a cohort to address this in
• Lack any spatial data



Credit Bo Xia

Development
/pseudotime

Original 
organ

Bulk Single-cell RNA-
seq

Spatial transcriptomics



Intestinal spatial transcriptomics: 
example of coeliac disease

Presenter Notes
Presentation Notes
We performed 10x visium spatial transcriptomics on 16 samples from 8 patients with and without coeliac disease. 
Annotation identified 14 transcriptionally distinct regions, including a series of regions corresponding to the crypt villous axis, with stem cell regions, lower crypt regions high is Paneth cells, TA zone, and villous regions corresponding to enterocyte maturation. 
These regions were perturbed in disease, with loss of mature villous regions in active CD, and increased size of immune rich and follicular/plasma cell rich regions 




Combine single cell and spatial datasets to define 
cellular networks

Presenter Notes
Presentation Notes
This network plot shows the co-localization of predicted cell types within space in the intestinal biopsies, with lines connecting cell types showing the strength of colocalization. 

We can see that the early enterocyte progenitors are closely associated in the rectangle on the left, very much as we expect. We can also see the assication of myeloid populations with B cells and NK cells, interestingly associated with particular stromal cell type signatures. 

We can also see an interesting spatial association with cycling and tissue resident T cell populations with these epithelial progenitors. 



Integration with scRNAseq data reveal presence of 
highly localized immune cell structures in the gut

Presenter Notes
Presentation Notes


We integrated single cell RNAseq cell specific profiles with the spatial transcriptomic data to predict locations of specific cell types within regions and in the biopsy sections themselves. 

On the left we can see the reassuring progression of the crypt villous axis, with transit amplifying cells in lower regions, and mature enterocytes near the epithelial surface by the gut lumen. These cell types are relatively diffuse, and uniform in their arrangement. 

In contrast, immune cell signals are highly localized. For instance in a single region of this healthy biopsy we can see a Myeloid cell signature, which is also associated with a potential signature of NK cells and B cells. 



Rapid development of spatial analytic tools

High content imaging
(20+ stains)

Combined staining and 
single-cell resolution transcriptomes  

(Kate Powell) (Fadi Issa: nanostring)



Where 
next? 



Where 
next? 

V1.0 = Healthy tissues



Infectious Diseases



Infectious Diseases

MAIT Plasma cells

For a given disease/site



Infectious Diseases

TB meningitis Melioid

Across diseases –
define fundamental processes 



Infectious Diseases

Covid-19 Melioid

Across diseases –
define fundamental processes

- Accelerate treatments 

Disease X
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