

Immune protection and Pathology: New tales from new tools

Immune protection and Pathology: New tales from new tools

Towards an Atlas of Infectious Diseases

Talk outline

- What we can learn from detailed studies of the host response to infections.
- How new broader immune tools can be applied (Covid, gut inflammation).
- Where this could go in the future.

Immunology and COVID-19 outcomes

Front line workers – innate immunity

Local heroes- the T cell response

T cell expansion

Broader cover- the B cell response

Setting the balance between immunity and immune pathology

Setting the balance between immunity and immune pathology

University of Oxford IMMUNOLOGY NETWORK

Setting the balance between immunity and immune pathology

University of Oxford IMMUNOLOGY NETWORK

Oxford COVID-19 immunology work packages

University of Oxford IMMUNOLOGY NETWORK

Work Package 1- Humoral immunity

Understanding and utilizing the human antibody response to SARS-CoV-2

Objectives:

- Development of sensitive and specific antibody tests (ELISAs) that can be utilized at scale (high throughput)
- Development of assays to detect neutralizing antibodies to SARS-CoV-2
- Understanding the prevalence of infection across populations
- Development of monoclonal antibodies

Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel

Emily R Adams, Mark Ainsworth, Rekha Anand, Monique I Andersson, Kathryn Auckland, J Kenneth Baillie, Eleanor Barnes, Sally Beer, John Bell, Tamsin Berry, Sagida Bibi, Miles Carroll, Senthi I Chinnakannan, Elizabeth Clutterbuck, Richard J Cornall, Derrick W Crook, Thushan De Silva, Wanwisa Dejnirattisai, Kate E Dingle, Christina Dold, Alexis Espinosa, David W Eyre, Helen Farmer, Maria Fernandez Mendoza, Dominique Georgiou, Sarah J Hoosdally, Alistair Hunter, Katie Jeffrey, Paul Klenerman, Julian Knight, Clarice Knowles, Andrew J Kwok, Ullrich Leuschner, Robert Levin, Chang Liu, Cesar Lopez-Camacho, Jose Carlos Martinez Garrido, De Philippa C Matthews, Hannah McGivern, De Alexander J Mentzer, Jonathan Milton, Juthathip Mongkolsapaya, Shona C Moore, Marta S Oliveira, Fiona Pereira, Elena Perez Lopez, Timothy Peto, Rutger J Ploeg, Andrew Pollard, Tessa Prince, David J Roberts, Justine K Rudkin, Veronica Sanchez, Gavin R Screaton, Malcolm G Semple, Donal T Skelly, Jose Slon-Campos, Elliot Nathan Smith, Alberto Jose Sobrino Diaz, Julie Staves, David Stuart, Piyada Supasa, Tomas Surik, Hannah Thraves, Pat Tsang, Lance Turtle, A Sarah Walker, Beibei Wang, Charlotte Washington, Nicholas Watkins, James Whitehouse **doi:** https://doi.org/10.1101/2020.04.15.20066407

Neutralising antibodies to SARS coronavirus 2 in Scottish blood donors - a pilot study of the value of serology to determine population exposure

Craig Thompson, Nicholas Grayson, Robert Paton, José Lourenço, [©] Bridget Penman, [©] Lian Ni Lee, [©] Valerie Odon, [©] Juthathip Mongkolsapaya, [©] Senthil Chinnakannan, Wanwisa Dejnirattisai, Matthew Edmans, Alexander Fyfe, Carol Imlach, [©] Kreepa Kooblall, Nicholas Lim, Chang Liu, Cesar Lopez-Camacho, Carol-Anne McInally, [©] Narayan Ramamurthy, [©] Jeremy Ratcliff, Piyada Supasa, Beibei Wang, Alexander J Mentzer, Marc Turner, Calum Semple, [©] John Kenneth Baille, ISARIC4C Investigators, Heli Harvala, [©] Gavin Screaton, [©] Nigel Temperton, [©] Paul Klenerman, Lisa Jarvis, [©] Sunetra Gupta, [©] Peter Simmonds doi: https://doi.org/10.1101/2020.04.13.20060467

Ability of antibodies to deal with variants

Good neutralization but impacted by mutation...

- Supasa et al Cell 2021
- Zhou et al Cell 2021
- Dejnirattisai et al Cell 2021
- Liu et al Cell 2021

Variation affects the binding of antibodies at very specific sites in the spike protein

Screaton and Stuart labs

Current status of antibodies in UK HCW: pre and post omicron wave

Hornsby et al, submitted

Current status of antibodies in UK HCW: pre and post omicron wave

- SARS-CoV-2-naive, pre-omicron
- SARS-CoV-2-naive, post-omicron
- Previously-infected, pre-omicron
- Previously-infected, post-omicron

Importance of looking mucosally

Hornsby et al, submitted

Work Package 4- T cell immunity

Define T cell responses to SARS-CoV2 to support developments in diagnostics, vaccination and therapeutics

Objectives:

- Define immunogenic and protective regions of SARS-CoV2
- Track antiviral T cells in blood and lung during acute infection and **define** correlates of protection for vaccination
- Define associations between T cell responses and clinical outcomes and risk groups (eg multimorbidity, ageing, bacterial co-infection)

PITCH Consortium

Protective **I**mmunity from **T** cells to **C**ovid-19 in **H**ealthcare workers Aim to provide evidence of the mechanisms of immunity to underpin vaccine effectiveness data from **SIREN**

Extension of the UK SIREN Study (Antibody, PCR & Vaccine Efficacy in 50,000 healthcare workers)

Dept of Health & Social Care Funded

- Prospective longitudinal cohort study in 5 sites
 - Oxford (Paul Klenerman, Susie Dunachie, Ellie Barnes, Philippa Matthews, Chris Conlon, Katie Jeffrey)
 - Liverpool (Lance Turtle)
 - Sheffield (Thushan de Silva, Sarah Rowland Jones)
 - Birmingham (Alex Richter)
 - Newcastle (Chris Duncan, Rebecca Payne)

PHE (Susan Hopkins, Meera Chand, Victoria Hall)

• 2074 Healthcare workers recruited to date

Baseline characterisation of T cell immunity to mild disease

Assay development. T cells can help control Covid-19 even without antibodies

• Ogbe et al Nature Comms

Baseline immunity predicts durability at 6 months

• Tomic et al Nature Comms

Responses to natural infection as comparator to ChAdOx trial

• Folegatti et Lancet 2020

Later characterisation of T cell immunity post vaccine

Moore et al, in press 2023

Later characterisation of T cell immunity post vaccine

Explore further with SEACOVARIANTS grant in SE Asia

Work Package 2- Genomics

Generating a Blood and Tissue COVID-19 Multi-omic Atlas

Objectives:

- Define the underlying processes which drive distinct outcomes for patients with COVID-19
- Define how host genetics controls these changes at a single cell level
- Look deeply into the **lung and respiratory tract** to address the underlying disease that we need to treat

Study design

Study initiated at outset of pandemic in UK

Patients recruited and samples processed through established eCRF and protocols working with critically ill patients (sepsis immunomics study); coenrolment (ISARIC)

In depth clinical phenotyping, use of electronic health record, SEND

Single centre recruitment - nimble, reactive and harmonised approach

Cases for core set acute illness discovery samples recruited 16th March -27th April 2020

		Н		Non-hospitalised					
	Mild disease	Seve disea	ere ase	Critical disease	Longitud sample	dinal es	Mild (H	disease ICW)	
C	COVID-19 onvalesce) ent	Heal cont	thy trol	Sepsis endo	(defii otypes	ned 5)	Influer	za

COVID-19 acute illness

• serial sampling in acute illness paired with convalescent

• spectrum of disease severity and time from symptom onset

matched comparator groups

	W			Assays		
	н О	Geno variat	me ion	SNP typing, NGS		
	L E	B&T	cell			
С	D	reperto	oire	BCR/TCR seq		
EL	L	Transcriptom	ics	Bulk RNA-seq		
U	Ö	Cutomod	hum /	CyTOF		
L		Cylome	ury			
R				FACS		
	P B	Single of transcriptom	cell	CITEseq (GEX)		
	M C	and proteom	ics	CITEseq (ADT)		
		Single cell E T cell reperto	3 & ire	CITEseq (BCR/TCR)		
		Proteomi	cs.	timsTOF		
F	-	lipidomi	ics	luminex		
A	λ 3	Serolo	ogy	lg, CMV/EBV, auto Ab		
N A	1 \	Viral RN	٨٨	SARS-CoV-2		
SWAB				SARS-CoV-2 seq		
		Vi	rus	Metagenomic seq		
С	LINI	Clini CAL measu	cal res	Clinical assays and parameters		
RESPONS		ONSE Physiolo	ogy	Vital sign monitoring		
Fui on	the san	r assays run nples,		Neutrophil and myeloid functional assays		
ext	ern	al datasets		T cell focused assays		

Study design

For a given

sample

or patient

sampled

over time

Study initiated at outset of pandemic in UK

140

Patients recruited and samples processed through established eCRF and protocols working with critically ill patients (sepsis immunomics study); coenrolment (ISARIC)

In depth clinical phenotyping, use of electronic health record, SEND

Single centre recruitment - nimble, reactive and harmonised approach

Cases for core set acute illness discovery samples recruited 16th March -27th April 2020

COVID-19 acute illness

Hospitalised patients								Non-hospitalised		
Mild disease	Mild Severe Crit disease disease dise		Criti disea	cal ase	cal Longitudinal se samples		Mild disease (HCW)			
COVID-19 onvalesce	9 ent	Hea con	lthy trol		Sepsis ende	s (defi otype	ined s)		Influen	za

Core set of 140 discovery samples (n=80 hospitalised COVID, n=12 in comparator groups)

Additional samples (including convalescent) to increase sample size and enable validation

• serial sampling in acute illness paired with convalescent

• spectrum of disease severity and time from symptom onset

matched comparator groups

COMBAT, Cell 2022

W H O L	Genome variation	Assays SNP typing, NGS	Genetic analysis	Data genera	ition, analysis & management
E B L O	B & T cell repertoire Transcriptomics	BCR/TCR seq Bulk RNA-seq	Bulk RNA-seq analysis	Initial sample processi Experimental work - W	ng - CCVTM/WIMM /HG/WIMM/TDI/Kennedy
0 D	Cytometry	CyTOF	CyTOF analysis	H&S - working with blo Data generation at un	bod from COVID-19 cases for lab/data generation precedented scale (single cell resolution); breadth of
P B M C	Single cell transcriptomics and proteomics	CITEseq (GEX)	FACS analysis CITE-seq pre-processing	Multiple data generation 30+ PIs, 6 institutes a	on and analysis teams involving 110+ researchers, cross Medical Sciences and Maths
C	Single cell B & T cell repertoire	CITEseq (BCR/TCR)	CITE-seq integration & alignment	Raw & processed data deposited; access to clinical data and	Data Management Team - sample ID system, metadata, deposition, data warehousing, high peformance compute workspace
P L	Proteomics, lipidomics	timsTOF luminex	CITE-seq clustering & differential modelling	deposited datasets ∢>	- governance, data security and sharing within COMBAT, Oxford Immunology Consortium and community (data releas- es & deposition)
A S M A	Serology Viral RNA	lg, CMV/EBV, auto Ab SARS-CoV-2	Repertoire analysis	All data inputed for	Integrative Data Analysis Team - maximising multi-modal data types
	Virus	SARS-CoV-2 seq Metagenomic seq	timsTOF analysis	integration and analysis ∢>	Data visualisationSystems biologyMachine learningModelling
CLIN ESP(Clinical ICAL measures DNSE Physiology	Clinical assays and parameters Vital sign monitoring	Iuminex analysis Primary Analysis Teams	Data Mining Team	Clinical Phenotyping Team - case definitions, data quality control, interface with local clinical teams
irthe sar mplo tern	r assays run nples, ementary al datasets	Neutrophil and myeloid functional assays T cell focused assays	PI leads, typically 3-6 team members (all grades), open calls within COMBAT	External datasets	Cohorts & sample collection

Dealing with multi-omics data

Explore specific hypotheses Functional studies Classic route to mechanisms Data integration Tensor deconvolution New route – **new hypotheses**

Dealing with multi-omics data

COVID-19 – COMBAT and CITEseq

	COVID-19 acute illness							
	Hospitalised patients Non-hospitalise							
Mild disease	Severe disease	Critical disease	Longitudinal samples		Mild disease			
Healthy control	Healthy Sepsis (defined Influenza control endotypes)							
Healthy controls	SRS1 endoty	l S pe enc	RS2 lotype	Sev dise	ere ase			

836, 148 cells analysed Around 130 distinct clusters annotated

Single cell RNASeq Step 1 – GEM generation and cell barcoding

- Cells are combined with Gel Beads, master mix, and partitioning oil
 → nanolitre-scale GEMs (Gel Beads-in-emulsion)
- Cells delivered at limiting dilution majority (~90-99%) of GEMs contain no cell, while remainder mostly contain a single cell

Final key steps of a general scRNA-seq analysis workflow

12. Visualise clusters – UMAP, tSNE

UMAP of all PBMCs

Linking scRNASeq and clinical outcomes: Loss of specific peripheral blood cell subsets in severe COVID-19/flu

Data from COMBAT consortium

Loss of specific T cell subsets in severe COVID-19/flu

Example - Genes upregulated on MAIT cells

Upregulated genes include C-type lectin domain-containing proteins (*KLRB1*) cytokine and chemokine receptors (*IL7R, IL23R, CXCR6, CCR6*), transcription factors (*RORC, FOS, JUN*), *TRAV1-2*, and the activation markers and *DPP4* (also MERS-CoV receptor).

value

0.75

0.25

MAIT cells: innate-like T cells that display TCRdependent and –independent activation

- Semi-invariant $\alpha\beta$ TCR
- Recognize riboflavin metabolites presented by MR1 (microbe derived)
- Predominantly CD8⁺ with a stereotyped phenotype
- Mixed Tc1/Tc17 response
- Potently activated by cytokines independent of TCR

Mucosa-Associated Invariant T cells (MAITs)

Nick Provine (Ann Rev Immunol 2020)

Nick Provine (Ann Rev Immunol 2020)

MAIT cell effector responses are governed by the integration of inflammatory and TCR signals

Provine and Klenerman, Ann Rev Immunol, 2020

Do MAIT cells offer protection against severe influenza challenge (PR8)?

Example - Genes upregulated on MAIT cells

Upregulated genes include C-type lectin domain-containing proteins (*KLRB1*) cytokine and chemokine receptors (*IL7R, IL23R, CXCR6, CCR6*), transcription factors (*RORC, FOS, JUN*), *TRAV1-2*, and the activation markers and *DPP4* (also MERS-CoV receptor). Also **strong activation (CD69)**

0.75

0.25

T cells: Association with death in ICU

Youngs, Provine et al, PLOS Pathogens Sept 2021

T cells: Association with death in ICU

Youngs, Provine et al, PLOS Pathogens Sept 2021

T cells: Association with death in ICU

Model 2 preferred over Model 3: LR 5.6 (p=0.02), AICc 2.7

Youngs, Provine et al, PLOS Pathogens Sept 2021

Single-cell RNASeq and multi-omics approaches

- Allow an "unbiased" screen
- Allow exploration of cellular functions/pathways to block
- Allow interrogation of antigen-specific responses
- Can be used in tissue samples

Single-cell RNASeq and multi-omics approaches

- Allow an "unbiased" screen
- Allow exploration of cellular functions/pathways to block
- Allow interrogation of antigen-specific responses
- Can be used in tissue samples
- But...
- Are expensive
- Need computational input (getting easier)
- Need a simple question and a cohort to address this in
- Lack any spatial data

Bulk

Spatial transcriptomics

Single-cell RNA-

Credit Bo Xia

Development /pseudotime

Intestinal spatial transcriptomics: example of coeliac disease

NW I

Active CD x 4 Healthy control x 3 Treated CD x 1

Combine single cell and spatial datasets to define cellular networks

Integration with scRNAseq data reveal presence of highly localized immune cell structures in the gut

Transit-amplifying cells located at crypt bases Mature enterocytes in surface villi

Highly localised myeloid signals in biopsy sections Associated with NK cell and B cell signatures

Rapid development of spatial analytic tools

High content imaging (20+ stains)

Combined staining and single-cell resolution transcriptomes

(Kate Powell)

(Fadi Issa: nanostring)

Where next?

V1.0 = Healthy tissues

Where next?

Across diseases define fundamental processes Infectious Diseases ATLAS **BRAIN** IMMUNE 25 tSNE_2 0 TISSUE HANDLING **GASTRO-**INTESTINAL &PROCESSING 12 -25 13 14 15 **SKIN** • 16 **TECHNOLOGY** DEVELOPMENT -25 -50 ό tSNE_1 25 Melioid **TB** meningitis

Across diseases define fundamental processes

25

-25

-50

-25

tSNE_2 0

Disease X

Susanna Dunachie **Donal Skelly** Sandra Adele Patpong Rongkard Mohammed Ali Barbara Kronsteiner-Dobramysl Anthony Brown **Eloise Philipps** Tom Malone Azim Ansari Philippa Matthews Ellie Barnes John Frater Matt Pace Ane Ogbe **Emily Adland** Helen Brown **Philip Goulder** Hema Mehta Ali Amini Nicholas Provine

(and many more!)

Medical

Council

Research

203

Department

of Health &

Social Care

Lizzie Stafford

Chris Conlon Katie Jefferys Anni Jamsen Siobhan Gardiner Síle Johnson **Bea Simmons Tim James** Stavros Dimitriadis

University of Oxford medical students

Christina Dold Adriana Tomic Daniel O'Connor Andrew Pollard (and many more!)

Alexandra Deeks (Project Manager) Jem Chalk (Database developr)

Thushan de Silva (U. Sheffield)

Sue Dobson (U. Liverpool) Christopher Duncan (U. Newcastle) Sian Faustini (U.Birmingham) Rebecca Payne (U. Newcastle) Alex Richter (U. Birmingham) Sarah-Rowland Jones (U. Sheffield & Oxford) Lance Turtle (U. Liverpool) Dan Wootton (U. Liverpool)

È Public Health England

Susan Hopkins Victoria Hall Nathalie Gleeson

velicome

Miles Carroll Stephanie Longet Tom Tipton

Alex Mentzer

Gavin Screaton

Wanwisa Dejnirattisai Piyada Supasa Chang Liu Daming Zhou Juthathip Mongkolsapaya

William James Adam Harding

Oxford Biomedical Research Centre

Adam Cribbs Aden Forrow Adriana Tomic Alberto Santos Delgado Alexander Mentzer Alexandru Voda Amanda Chong Andrew Brown Andrew Kwok Angela Lee Anna James-Bott Ashwin Jainarayanan **Beniamin Fairfax** Benjamin Hollis Bo Sun Brian Marsden Calliope Dendrou Charlotte Rich-Griffin Chelsea Taylor Chris Eiisbouts Christina Dold Claudia Monaco Daniel O'Connor David Buck David Sims Dominik Trzupek Emma Davenport Emmanouela Repapi Fabian Ruehle **Fabiola** Curion Felicia Tucci Fiona Powrie Frank Penkava Georgina Berridge Georgina Kerr Giorgio Napolitani Giuseppe Scozzafava

Graham Ogg Guanlin Wang Hai Fang Hal Drakesmith Heather Harrington Helen Byrne Hong Harper Hubert Slawinski Ian Pavord Iolanda Vendrell Irina Udalova Isar Nassiri Jian Luo Jim Hughes John Todd Julian Knight Justin Whalley Kathrin Jansen Katie Burnham Lauren Overend Leila Godfrey Ling-Pei Ho Lucy Garner Luke Jostins-Dean Luzheng Xue Maria Gomez Vazguez Mariana Pereira Pinho Mariolina Salio Mark Coles Martin Sergeant Martyna Lukoseviciute Matthew Jackson Michael Weinberger Mike Challen Moustafa Attar Nicholas Provine Nicola Curry

Orion Tong Otto Sumray Paresh Vyas Paul Klenerman Paula Hutton Peter Watkinson Philip Charles Phuong Quan **Ping Zhang** Piyush Kumar Sharma Rachael Bashford-Rogers **Rachel Etherington** Raphael Heilig Renee Hoekzema Ricardo Ferreira Robbie Davies Robert Esnouf Robert Watson Roman Fischer Ron Schwessinger Ryan Hoyle Sally Beer Santiago Revale Simon Myers Stephen Sansom Stephen Taylor Supat Thongjuea Tanya Golubchik Tao Dong Tatjana Sauka-Spengler Tracey Mustoe Vinod Kumar Wentao Chen Yanchun Peng Yi-Ling Chen Yuxin Mi 7ixi Yin

University of Oxford MATHEMATICAL, PHYSICAL AND LIFE SCIENCES DIVISION

MRC

Weatherall

Institute of

Molecular

Medicine

BIG DATA INSTITUTE

Li Ka Shing Centre for Health Information and Discovery

Radcliffe Department of Medicine

NHS Oxford University Hospitals NHS Foundation Trust

TARGET

DISCOVERY

INSTITUTE

University of Oxford IMMUNOLOGY NETWORK

University of Oxford MEDICAL SCIENCES DIVISION

