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Talk outline

* What we can learn from detailed studies of the host response to
infections.

* How new broader immune tools can be applied (Covid, gut
inflammation).

* Where this could go in the future.



Immunology and COVID-19 outcomes

Sars-CoV2 infection OUTCOME Factors determining outcome

€

* - age, sex

’:ﬁ‘ # @@ asymptomatic
#ﬁ *u - underlying diseases

)
2

- quality and magnitude of the

mild: immune response?
flu-like symptoms

severe:
pneumonia, death

University of Oxford

IMMUNOLOGY NETWORK



Front line workers — innate immunity

2 (an X Ai lini [
y = irway lining cells

Blood vessel

University of Oxford
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Local heroes—the T cell response

Antigen presenting
cells

Lymphoid tissue

Local killing and help

T cell expansion University of Oxford

IMMUNOLOGY NETWORK



Broader cover— the B cell response

Lymphoid tissue

Mucosal IgA

Development of
Antibody secreting B cells University of Oxford

IMMUNOLOGY NETWORK

Circulating 1gG



Setting the balance between immunity and immune pathology

Immunit
¥ Immune mediated

pathology

Rapid clearance of
infected cells

Inflammation
Tissue damage/dysfunction

Host factors Viral factors
Genetics Genetics
Sex Dose
Age Route

University of Oxford

IMMUNOLOGY NETWORK



HIV

Hepatitis C
Hepatitis B
Influenza
SARS

LCMV (model)
etc

Setting the balance between immunity and immune pathology

Immunit
¥ Immune mediated

pathology

Inflammation
Tissue damage/dysfunction

Rapid clearance of
infected cells

Host factors Viral factors
Genetics Genetics
Sex Dose
Age Route

University of Oxford
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HIV

Hepatitis C
Hepatitis B
Influenza
SARS

LCMV (model)
etc

Setting the balance between immunity and immune pathology

Integration of innate and adapative immunity

Immunit
¥ Immune mediated

pathology

Inflammation
Tissue damage/dysfunction

Rapid clearance of
infected cells

Host factors Viral factors
Genetics Genetics
Sex Dose
Age Route

University of Oxford

IMMUNOLOGY NETWORK
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Cohorts and sample collection

Oxford COVID-19 immunology work packages

h 4
\ 4 v v L 4
Work Package 1- Work Package 2- Work Package 3- Work Package 4- T cell
Humoral immunity Genomics Inflammatory immunity
response

Antibody tests *  Multi-omics of * Innate immunity in * Tcell responses to

Therapeutic patient samples COVID-19 SARS-CoV-2

monoclonal pathogenesis

antibodies

PR Work Package 5- Data integration and analysis Clinical Trials (eg

Vaccine Studies

Integration of experimental and clinical datasets

¢ -> plasma therapy,
anti-TNF)

University of Oxford

IMMUNOLOGY NETWORK



A vieal infection B: antibody response

Work Package 1- Humoral immunity SARS-CoV-2 e ————
single stranded RNA genome
~20kB = Ig - corvalescent phase

Understanding and utilizing the human antibody response to SARS-CoV-2

. . = _."-f _h‘-_--| il
Objectives: %G 3 /|
rimeric ;E ? /-t:..—.x

* Development of sensitive and specific antibody tests (ELISAs) that can

be utilized at scale (high throughput) gt i _{:-"______./ T
* Development of assays to detect neutralizing antibodies to SARS-CoV-2 : 9 Temo
* Understanding the prevalence of infection across populations sty Aove  Cumde
* Development of monoclonal antibodies fepcey _ {og iy 2635

\‘,{?

antibody response to
wiral spike protein

University of Oxford

IMMUNOLOGY NETWORK
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Pre—palndemic PCR—pos'itive case Convalescent PéR—positive case
control (<=28 days from symptom onset) (>28 days from symptom onset)
Antibody testing for COVID-19: A report from the National Neutralising antibodies to SARS coronavirus 2 in

Scottish blood donors - a pilot study of the value of serology to determine
population exposure

COVID Scientific Advisory Panel
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Gavin R Screaton, Malcolm G Semple, Donal T Skelly, Jose Slon-Campaos, Elliot Mathan Smith, . .
University of Oxford
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Ability of antibodies to deal with variants

Pfizer
P<0.0001 (7.6X)

P<0.0001 (2.6X)
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FRNT50 (Reciprocal serum dilution)

Good neutralization but impacted by
mutation...

* Supasa et al Cell 2021

* Zhou et al Cell 2021

* Dejnirattisai et al Cell 2021

* Liuetal Cell 2021

Screaton and Stuart labs
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Variation affects the binding of
antibodies at very specific sites in the
spike protein



Current status of antibodies in UK HCW: pre and

post omicron wave

105+

104+

FRNT50
-
<

102.

10'

Neutralizing activity (plasma)
BA.1 neutralizing antibodies
p<0.0001  p=0.002 p<0.0001 p=0002 p<0.0001 p=0,007

BA.2 neutralizing antibodies

o SARS-CoV-2 naive, pre-omicron
-+ SARS-CoV-2 naive, post-omicron
-o- Previously-infected, pre-omicron
- Previously-infected, post-omicron

Hornsby et al, submitted



Current status of antibodies in UK HCW: pre and
post omicron wave

o [«

A S-specific slgA (nasal)
p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0O001 p<0.0001 p<0.0001  p<0.0001
16.5x 13.0x 13.3x 10.6x 13.5x 14.8% 11.4x 12.8%
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Importance of looking mucosally Hornsby et al, submitted



Work Package 4- T cell immunity

Define T cell responses to SARS-CoV2 to support developments in diagnostics,
vaccination and therapeutics

Objectives:

* Define immunogenic and protective regions of SARS-CoV2

* Track antiviral T cells in blood and lung during acute infection and define
correlates of protection for vaccination

* Define associations between T cell responses and clinical outcomes and risk
groups (eg multimorbidity, ageing, bacterial co-infection)

University of Oxford

IMMUNOLOGY NETWORK
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PITCH Consortium

Protective Immunity from T cells to Covid-19 in Healthcare workers
Aim to provide evidence of the mechanisms of immunity to underpin vaccine effectiveness data

from SIREN

5 7
Extension of the UK SIREN Study (Antibody, PCR & Vaccine Efficacy N
: TOE F
in 50,000 healthcare workers) I /
Dept of Health & Social Care Funded EE;/; =
Az‘%im?’ ~LA
. . . . . Vol
* Prospective longitudinal cohort study in 5 sites /L/@) f\
» Oxford (Paul Klenerman, Susie Dunachie, Ellie Barnes, Philippa Matthews, {Nw‘*/ '\Eﬁwca“'e
Chris Conlon, Katie Jeffrey) % \W N
» Liverpool (Lance Turtle) Liverpool ¢ Shef‘fieldjs\
q(“\j)\k/’\ﬁg\ . \
» Sheffield (Thushan de Silva, Sarah Rowland Jones) Z} \\% Q""\\
T2 Birmingham ‘
> Birmingham (Alex Richter) St ) J
» Newcastle (Chris Duncan, Rebecca Payne) eI Y ontid ;7

PHE (Susan Hopkins, Meera Chand, Victoria Hall)

e 2074 Healthcare workers recruited to date ‘H

PROTECTIVE IMMUMNITY from T CELLS
in HEALTHCARE WORKERS
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Assay development. T cells can help
control Covid-19 even without

Baseline characterisation of T cell immunity to mild disease
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Accessory

antibodies

Ogbe et al Nature Comms

CEF control

Baseline immunity predicts
durability at 6 months

Tomic et al Nature Comms

Disease severity

® MenACWY 8 Asymptomatic
® ChAdOx1 nCoV-19 = Mild
8192 8 Severe

e neutralisation IC,

.
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.
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R 1
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u
T
o 28 35 £ Convalescent
plasma samples
Dl sasisncd Days since vaccination
ChAdOXLnCoV-19 39 38 10 9
MenACWY 30 30 0 0

Responses to natural infection
as comparator to ChAdOx trial
* Folegatti et Lancet 2020



Presenter Notes
Presentation Notes
A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.
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Later characterisation of T cell immunity post vaccine

T cell (IFNy ELISpot) response to spike

variants at V3 + 6 months
F n ®
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= o
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0 . ¥ S
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0 1 -
Ancestral

BA.1 BA.2 BA.4/5 Ancestral BA.1 BA.2 BA.4/5

Naive Hybrid Immunity

Moore et al, in press 2023
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A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.
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Later characterisation of T cell immunity post vaccine
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Explore further with SEACOVARIANTS grant in SE Asia
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Presentation Notes
A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.
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Work Package 2- Genomics

Generating a Blood and Tissue COVID-19 Multi-omic Atlas

Objectives:
* Define the underlying processes which drive distinct outcomes for patients
with COVID-19

* Define how host genetics controls these changes at a single cell level
* Look deeply into the lung and respiratory tract to address the underlying
disease that we need to treat

University of Oxford

IMMUNOLOGY NETWORK



Study design

Study initiated at outset of pandemic in UK

Patients recruited and samples processed through established eCRF and protocols working with
critically ill patients (sepsis immunomics study); coenrolment (ISARIC)

In depth clinical phenotyping, use of electronic health record, SEND
Single centre recruitment - nimble, reactive and harmonised approach
Cases for core set acute illness discovery samples recruited 16th March -27th April 2020

COVID-19 acute illness

Hospitalised patients Non-hospitalised « serial sampling in acute illness
SOOI [ ongitudinal Mild disease paired with convalescent
disease disease samples (HCW)

* spectrum of disease severity

COVID-19  Healthy Sepsis (defined  Influenza 2" time from symptom onset

convalescent control endotypes)
Convalescent  Healthy Severe
(survivors) controls disease

Core set of 140 discovery samples
(n=80 hospitalised COVID, n=12
in comparator groups)

» matched comparator groups

Additional samples (including
convalescent) to increase sample
size and enable validation




W

H Genome

(L) variation

E B & T cell
C repertoire
E B

‘B Transcriptomics
L p
L1o
U

D
L Cytometry
A
R

Single cell

transcriptomics
and proteomics

Single cell B &
T cell repertoire

Proteomics,
E lipidomics
A
S Serology
M )
A Viral RNA

Virus

Clinical
CLINICAL measures

RESPONSE

Physiology
Further assays run

on samples,
complementary
external datasets

Assays
SNP typing, NGS

BCR/TCR seq
Bulk RNA-seq

CyTOF

FACS

CITEseq (GEX)

CITEseq (ADT)
CITEseq (BCR/TCR)

timsTOF
luminex

Ilg, CMV/EBYV, auto Ab
SARS-CoV-2
SARS-CoV-2 seq
Metagenomic seq

Clinical assays and
parameters

Vital sign monitoring

Neutrophil and myeloid
functional assays

T cell focused assays

Study design

Study initiated at outset of pandemic in UK

Patients recruited and samples processed through established eCRF and protocols working with
critically ill patients (sepsis immunomics study); coenrolment (ISARIC)

In depth clinical phenotyping, use of electronic health record, SEND
Single centre recruitment - nimble, reactive and harmonised approach

Cases for core set acute iliness discovery samples recruited 16th March -27th April 2020

COVID-19 acute illness

Hospitalised patients

Longitudinal
samples

Non-hospitalised

Mild disease
(HCW)

* serial sampling in acute illness

Critical paired with convalescent

disease

Severe

disease

* spectrum of disease severity
and time from symptom onset

CoVID-19 Healthy Sepsis (defined Influenza
convalescent control endotypes) * matched comparator groups
Convalescent  Healthy SRS2 Severe
(survivors) controls endotype disease
For a given Core set of 140 discovery samples
sample (n=80 hospitalised COVID, n=12
or patient in comparator groups)
sampled
over time Additional samples (including

convalescent) to increase sample
size and enable validation

COMBAT, Cell 2022



Assays

Genome g\ p yping, NGS D) Data generation, analysis & management

variation

B &Tcell
repertoire

BCR/TCR seq

Initial sample processing - CCVTM/WIMM

Bulk RNA-seq analysis
C ) Experimental work - WHG/WIMM/TDI/Kennedy

Transcriptomics  Bulk RNA-seq

— CyTOF CCyTOF analysis ) H&S - worklng with blood from COVID-19 c.ases for Iab/daté generation
Data generation at unprecedented scale (single cell resolution); breadth of
FACS assays and platforms (immune, multi-omic); novel method development
FACS lysi
( i ) Multiple data generation and analysis teams involving 110+ researchers,

Single cell
ClTEseq (GEX) 30+ Pls, 6 institutes across Medical Sciences and Maths

transcriptomics i
and proteomics  C[TEseq (ADT) (CITE-seq pre-processm@
Single cell B & - ; Raw & processed data Data Management Team
- cel?repertoire CITEseq (BCR/TCR) [CI_TE-seq integration & j deposited; access to - sample ID system, metadata, deposition, data warehousing,
alignment clinical data and high peformance compute workspace
) timsTOF deposited datasets - governance, data security and sharing within COMBAT,
Proteomics, CITE-seq clustering & < > Oxford Immunology Consortium and community (data releas-
lipidomics  jyminex differential modelling es & deposition)
U J
Serology Ig, CMV/EBYV, auto Ab fl ¢ tive Data Analysis T
, CRepertoire analysis ) i ntegrative Jata Analysis ‘eam
Viral RNA SARS-CoV-2 All data inputed for - maximising multi-modal data types
SARS-CoV-2 seq : - ‘lntegratlon and anaIyS|§ Data visualisation @ Systems Machine @ Modelling
Virus _ (tlmSTOF analysis ) < > biology learning
Metagenomic seq \_
Clinical Clinical assays and (Iuminex analysis ) Yo -
Inical Harameters @ata Mining Team) Clinical Phenotyping Team ( Project manager )
measures . . A - case definitions, data quality control,
Physiology Vital sign monitoring Primary Analysis Teams : interface with local clinical teams
Pl leads, typically 3-6 team External A\
Neutrophil and myeloid | members (all grades), open datasets A
functional assays calls within COMB AT Cohorts & sample collection

T cell focused assays




Dealing with multi-omics data

Multiple parallel datasets
“Unbiased”
approach Carefully collected
clinical cohort
Splitt/ \mpmg

Data integration
Tensor deconvolution
New route — new hypotheses

Explore specific hypotheses
Functional studies
Classic route to mechanisms



Dealing with multi-omics data

Multiple parallel datasets
“Unbiased”
approach Carefully collected
clinical cohort

Splitting Lumping IL6 pathway
GM-CSF pathway

AP-1 signalling

Data integration
Tensor deconvolution
New route — new hypotheses

Explore specific hypotheses
Functional studies
Classic route to mechanisms



COVID-19 — COMBAT and CITEseq

COVID-19 acute illness

HOSpitalised patients Non.hospita"sed
Mild SEVCICINO=I Longitudinal Mild
disease | disease disease WEEENIES disease
Healthy Sepsis (defined Influenza
control endotypes)

Healthy SRS2 Severe
controls endotype disease

n=10 pools of each pool split
on n=7 channels ]
——» 5'GEX
CTEseq ezl 4 sequencing
staining off . — (ITE-seq (n=192abs) | |ibraries
—> ;
FACS ELuuu ¢ —— Tl TCRVIDY :f%channels
viability ey -
. B-cell igV(D)J
n=14patients  sort 50,000 cells loaded 9V _
per pool per channel

836, 148 cells analysed
Around 130 distinct clusters annotated



= Single cell RNASeq Step 1 — GEM generation

and cell barcoding

* Cells are combined with Gel Beads, master mix, and partitioning oil
— nanolitre-scale GEMs (Gel Beads-in-emulsion)

* Cells delivered at limiting dilution — majority (~90-99%) of GEMs
contain no cell, while remainder mostly contain a single cell

Chromium Next GEM Chip G

£ 5

\ j
. N
10x Barcoded Partitioning Oil
Gel Beads
Labeled Cells

Enzyme


Presenter Notes
Presentation Notes
Cells partitioned into nanolitre-scale GEMs
Master mix contains reverse transcription reagents
Forms nanolitre-scale droplets
Microreactions


Final key steps of a general scRNA-seq

analysis workflow

12. Visualise clusters — UMAP, tSNE
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Clustering was prior to stringent filtering


UMAP of all PBMCs

B and
plasma
cells

UMAP_1

~836,000 cells

Monocyte
s and cDCs

Other e.g. pDCs,
megakaryocytes,
erythrocytes, and
progenitor cells



PC2 (11.28%)

Linking scRNASeq and clinical outcomes: Loss of specific peripheral blood cell
subsets in severe COVID-19/flu
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Loss of specific T cell subsets in severe COVID-19/flu
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Example - Genes upregulated on MAIT cells

TRAV1-2

AQP3 NFKBIA SPOCK2 CXCRé DPP4

FOS KLRB1 GZMK SLC4A10 CD40LG JAML RORC

TRBV6-4 TNFAIP3 CCR6 CD69 TRBV20-1 CTSA

value

Upregulated genes include C-type lectin domain-containing proteins (KLRB1) cytokine and chemokine
receptors (IL7R, IL23R, CXCR6, CCR6), transcription factors (RORC, FOS, JUN), TRAV1-2, and the
activation markers and DPP4 (also MERS-CoV receptor ).




MAIT cells: innate-like T cells that display TCR-
dependent and —independent activation
A TCR-dependent

* Semi-invariant a3 TCR G“’;"'"SB Exogenous
ligand

MR1

* Recognize riboflavin
metabolites presented by
MR1 (microbe derived)

* Predominantly CD8* with
a stereotyped phenotype

* Mixed Tc1/Tc17 response

* Potently activated by
cytokines independent of
TCR

Cytokine
receptors

Modified from: Garner, Klenerman, and Provine, Front Immunol, 20



Mucosa-Associated Invariant T cells (MAITs)

Tissue homing Type 17 immunity

IL-23R

CD161

MAIT cell

T-bet Va7.2-Ja33/20M12

Eomes VB2 or VB13
CD56 Blimp-1
Granzyme B
ccLaa © . 5 Perforin
°® Granulysin
°
0o _ o
°
... e
IFN-y
IFNaR | 12R 1L2RE  TNF-a
Innate Type 1 immunity

Nick Provine (Ann Rev Immunol 2020)



Mucosa-Associated Invariant T cells (MAITSs)

Tissue homing Type 17 immunity

IL-23R
CCR6 CD161

IL-22
— Respond to
R CIEBPS RORyt \ S Microbial
STAT3 o

Ligand

MAIT cell

T-bet Va7.2-Ja33/20M12

Eomes VB2 or VB13
CD56 Blimp-1
Granzyme B
coLs © ©° Perforin
g o Granulysin
°
e
Respond to viruses
IFNaR || 12R IL2Rp TNFa
Innate Type 1 immunity

Nick Provine (Ann Rev Immunol 2020)



Provine and Klenerman,
Ann Rev Immunol, 2020

MAIT cell effector responses are governed by the
integration of inflammatory and TCR signals

Q




% body weight loss

Do MAIT cells offer protection against severe
influenza challenge (PR8)?

- =) 100
P MR1+ (n=9) = il
—— MR1+ + MAIT transfer (n=6) =
[P a ..:
E 50- I teececconces
o [ [~ WI (n=36) L _
@ [-- MR1* (n=41) —————a
ns [ns 4
.................. 0 -=- MR1* + MAIT (n=6)

012345467 8 9 10 11 12
Time post-infection (days)

2345678 9101112131415
Time post-infection (days)

Van Wilgenburg/Loh Nature Comms 2018



Example - Genes upregulated on MAIT cells

TRAV1-2

AQP3 NFKBIA SPOCK2 CXCRé DPP4

FOS KLRB1 GZMK SLC4A10 CD40LG JAML RORC

TRBV6-4 TNFAIP3 CCR6 CD69 TRBV20-1 CTSA

value

Upregulated genes include C-type lectin domain-containing proteins (KLRB1) cytokine and chemokine
receptors (IL7R, IL23R, CXCR6, CCR6), transcription factors (RORC, FOS, JUN), TRAV1-2, and the
activation markers and DPP4 (also MERS-CoV receptor ). Also strong activation (CD69)




CD69+
(% of subset)

100
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¢ S o

T cells: Association with death in ICU

0.005 <0.0001 <0.0001 <0.0001 0.003 <0.0001 0.0004
<0.0001 <0.0001 <0.0001 <0.0001 0.002 <0.0001 <0.0001
ns ns ns ns ns ns ns

X
&
o

Youngs, Provine et al,
PLOS Pathogens Sept 2021



T cells: Association with death in ICU

CD69+
(% of MAIT cells)

M

1008 -
75,1
501 W 95%Cl:
251 |

> 50% 2.49-14.1

Percent survival

0 ———
0 30 60 90
Days from ICU admission

Youngs, Provine et al,
PLOS Pathogens Sept 2021



T cells: Association with death in ICU

Percent survival

CD69+
(% of MAIT cells)

100

0 . : :
0 30 60 90
Days from ICU admission

C

Model 1
CD69+ MAIT alone (p1)
1.0 % R2(0.3
0.8
g 0.6 AUC 0.82
% 0.4 (p 0.0005)
? 0.2 1 est 0.048
0.0¥ SE 0.02 (p 0.002)
Q’Q Q(']’ QP‘ Qb QgJ '\'Q
1 - Specificity
Model 2
p1 & clinical variables
10 ~ R20.63
> 0.8
= 06 AUC 0.95
2 04 (P<0.0001)
(7]
M B1 est 0,048
R SE 0.023 (p 0.04)

Q7R QTN
1 - Specificity

p1:
CD69+ MAIT

Clinical variables:

Blood sampling post symptoms
Age

SOFA & Apache I
Lymphocytes

Model 3
Clinical variables alone

1.0
R20.51

AUC 0.91
(P<0.0001)

0%
RGITIICIR

1 - Specificity

Model 2 preferred over Model 3: LR 5.6 (p=0.02), AlCc 2.7

Youngs, Provine et al,
PLOS Pathogens Sept 2021



Single-cell RNASeq and multi-omics approaches

* Allow an “unbiased” screen

* Allow exploration of cellular functions/pathways to block
 Allow interrogation of antigen-specific responses

* Can be used in tissue samples



Single-cell RNASeq and multi-omics approaches

* Allow an “unbiased” screen

 Allow exploration of cellular functions/pathways to block
 Allow interrogation of antigen-specific responses

* Can be used in tissue samples

* But...

* Are expensive

* Need computational input (getting easier)

* Need a simple question and a cohort to address this in
 Lack any spatial data



Single-cell RNA-
seq
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Intestinal spatial transcriptomics
example of coeliac disease

Region
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Presenter Notes
Presentation Notes
We performed 10x visium spatial transcriptomics on 16 samples from 8 patients with and without coeliac disease. 
Annotation identified 14 transcriptionally distinct regions, including a series of regions corresponding to the crypt villous axis, with stem cell regions, lower crypt regions high is Paneth cells, TA zone, and villous regions corresponding to enterocyte maturation. 
These regions were perturbed in disease, with loss of mature villous regions in active CD, and increased size of immune rich and follicular/plasma cell rich regions 



Combine single cell and spatial datasets to define
cellular networks
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Presenter Notes
Presentation Notes
This network plot shows the co-localization of predicted cell types within space in the intestinal biopsies, with lines connecting cell types showing the strength of colocalization. 

We can see that the early enterocyte progenitors are closely associated in the rectangle on the left, very much as we expect. We can also see the assication of myeloid populations with B cells and NK cells, interestingly associated with particular stromal cell type signatures. 

We can also see an interesting spatial association with cycling and tissue resident T cell populations with these epithelial progenitors. 


Integration with scRNAseq data reveal presence of
highly localized immune cell structures in the gut

Mature Enterocytes . . Mye\uidu. - NK cells . . B-cells l

00 02 04 06 08

A
000102030408 0 02 04 06 000 0.04 0.08 0.12 0.000.026.050.078.100.125

Transit-amplifying cells located at crypt bases Highly localised myeloid signals in biopsy sections
Mature enterocytes in surface villi Associated with NK cell and B cell signatures


Presenter Notes
Presentation Notes


We integrated single cell RNAseq cell specific profiles with the spatial transcriptomic data to predict locations of specific cell types within regions and in the biopsy sections themselves. 

On the left we can see the reassuring progression of the crypt villous axis, with transit amplifying cells in lower regions, and mature enterocytes near the epithelial surface by the gut lumen. These cell types are relatively diffuse, and uniform in their arrangement. 

In contrast, immune cell signals are highly localized. For instance in a single region of this healthy biopsy we can see a Myeloid cell signature, which is also associated with a potential signature of NK cells and B cells. 


Rapid development of spatial analytic tools

High content imaging
(20+ stains)

Combined staining and
single-cell resolution transcriptomes

(Kate Powell) (Fadi Issa: nanostring)
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For a given disease/site
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Across diseases —
define fundamental processes

TB meningitis
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Across diseases —
define fundamental processes
- Accelerate treatments
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