ANTIFUNGAL ACTIVITY AND LOCAL TOXICITY STUDY OF
ALANGIUM SALVIIFOLIUM SUBSP HEXAPETALUM

Mansuang Wuthi-udomlert¹, Sompop Prathanturarug² and Yuvadee Wongkrajang³

¹Department of Microbiology, ²Department of Pharmaceutical Botany, ³Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand

Abstract. Alangium salviifolium subsp hexapetalum is a medicinal plant which has been traditionally used for tonic and treatment of hemorrhoid. This plant showed promising antimicrobial activity in our preliminary experiments, this study was, therefore, conducted to investigate its inhibitory effect against dermatomycotic organisms and its toxicity. The lyophilized powder extract (4.59%) of pulverized wood was tested for its inhibitory effect by agar disc diffusion test. The extract gave inhibitory zone diameters of 25.23 and 14.78 mm against 26 and 14 isolates of dermatophytes and Candida albicans, respectively. Ketoconazole, used as a reference antifungal agent, had inhibitory zone diameters of 33.15 and 27.93 mm against dermatophytes and C. albicans, respectively. There was no significant difference between the extract and ketoconazole in their inhibition against dermatophytes (p > 0.01), but their difference was significant against C. albicans (p < 0.01). Using Buehler’s method, different amounts of extract (3, 6, and 9 mg/inch² gauze pad) were tested in five male New Zealand white rabbits. All tested amounts of extract did not induce dermatitis among those rabbits within 1 week. The results demonstrated the inhibitory effect of Alangium salviifolium subsp hexapetalum against fungi without any local toxicity; a tendency to further develop a herbal preparation for the treatment of some dermatomycotic infections.

INTRODUCTION

Plant extracts were widely screened for its medicinal usage. The increasing incidence of infections by fungi in systemic, central nervous system or dermal infections, emphasizes the search for new antifungal substances. Healthcare properties of Alangium salviifolium subsp hexapetalum were reported in many Asian countries: India, China, Philippines as well as Thailand. A. salviifolium subsp hexapetalum traditionally called in Thai as Proo, is a shrub or a small tree found in forests, uplands and plains. Its white flowers frequently bloom in March. In old Thai texts, bark of Proo was used to treat diarrhea and as an expectorant in patients with asthma. Its fruits have anthelmintic and carminative properties while its wood was used as tonic and treatment of hemorrhoid. This plant is used externally in Ayurvedic soap: Tulsi-Neem commercialized by an USA company. In India, a study in mice indicated that anti-fertility activities were found in methanol aqueous, and ethyl acetate extracts of stem bark (Murugan et al, 2000). The present investigation demonstrates inhibitory effects of an aqueous lyophilized extract of A. salviifolium subsp hexapetalum against dermatomycotic organisms and its local toxicity using Buehler method (1995).

MATERIALS AND METHODS

Plant material

Commercial A. salviifolium subsp hexapetalum was purchased from a local herbal supplier. The ground wood of A. salviifolium subsp hexapetalum was macerated (1/4) in sterile distilled water. After 24 hours, the filtrate was lyophilized and kept in tightly closed container. The maceration of A. salviifolium subsp hexapetalum yielded 4.59% yellowish brown sticky powder.

Tested organisms

Dermatophytes and Candida albicans were obtained from the Department of Microbiology, Faculty of Pharmacy, Mahidol University. Actively growing dermatophytes and C. albicans were suspended in sterile distilled water and the density was adjusted to be equivalent to McFarland No. 1.

Disc

The extract was dissolved in distilled water, ketoconazole was diluted in a mixture of ethanol and water (1:3). The test material was dropped onto sterile blank discs (6 mm in diameter) (Schleicher & Schuell, Germany) at the amount of 500 μg/disc and 20 μg/disc for ketoconazole.
Antifungal Activity and Toxicity of A. salviifolium subsp. hexapetalum

Reference antifungal
Ketoconazole was kindly provided by Unison Co. Ltd; Bangkok, Thailand.

Agar disc diffusion test
Twenty microliters of dermatophyte inoculum was added into 5 ml of melted Sabouraud Dextrose Agar (SDA) (Hispalab, SA, Spain) before overlaying on 10 ml-SDA plate and an inoculum of C. albicans was swabbed on the surface after the solidification of the agar.

Discs of test material and the reference drug were placed onto the surface of inoculated plates. Plates were incubated at room temperature for 3-5 days and 37 °C for 24-48 hours for dermatophytes and C. albicans respectively.

Contact dermatitis induction
The extract was diluted with DMSO and sterile distilled water (1 : 1); 0.5 ml (3, 6 and 9 mg extract each) was absorbed on 1 X 1 inch gauze pad. These gauze pads and the control pads (DMSO: sterile distilled water and normal saline solution) were tightly overlaid on a lateral shaved area of 5 male New Zealand white rabbits, weighted 2 kg each. After 24, 48, 72 hours and one week after the contact, responses of redness, wheal or inflammation were observed and graded as 0-4 as the degree of dermatitis: +, slightly irritation: redness; ++, moderately irritation: redness, wheal; ++++, irritation presence: redness and wheal.

RESULTS
Inhibitory-zone diameters were measured using a ruler and the zone was regarded as antifungal activity of the tested materials against 26 dermatophytes and 14 C. albicans, as shown in Table 1.

Dermatitis induction after 24, 48, 72 hours and 1 week of contact was observed. There was no signs of dermatitis occurred at the site of contact in all rabbits (Table 2).

DISCUSSION
The extract of A. salviifolium subsp. hexapetalum

Table 1

<table>
<thead>
<tr>
<th>Organism</th>
<th>Number of isolates</th>
<th>Diameters (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. salviifolium extract (500 μg)</td>
</tr>
<tr>
<td>Dermatophytes</td>
<td>26</td>
<td>25.23</td>
</tr>
<tr>
<td>C. albicans</td>
<td>14</td>
<td>14.78</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Duration of contact (hour)</th>
<th>Degree of response in 5 rabbits</th>
<th>Extract /test site (mg)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 week</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

-, no irritation
yielded 4.59% in the form of freeze-dry powder. A previous study by Murugan et al. (2000) reported a yield of 4.20% of aqueous extract by Soxhlet apparatus using petroleum ether, chloroform, ethyl acetate, methanol and water as solvents and revealed that alkaloids, steroids, saponin and flavonoids were ingredients present in stem bark of *A. salviifolium* subsp *hexapetalum*. Methanolic extract contained tannins and phenolic compounds.

The inhibitory effect of lyophilized aqueous extract of *A. salviifolium* subsp *hexapetalum* on dermatophytes was not significantly different from that of the reference drug, ketoconazole, while the activity against *C. albicans* differed. In addition, lyophilized extract, up to 9 mg per test site, demonstrated no induction of dermal irritability in rabbits. However, the exact ingredient responsible for dermatitis was not investigated. It was noted that, lyophilized powder was obtained by maceration of ground stem bark, without an exposure to any heat. The freeze-dry procedure did not alter the ingredient’s configuration. In the experiment of Murugan et al. (2000), successively aqueous extract by Soxhlet apparatus with polarity order of solvents, gave slight score of 2 on rats. Therefore, the source of different local wood, the amount of the extract, animal model used and its age, sex and weight, as well as procedures used to extract the ingredients might be responsible for the different outcome in dermal dermatitis.

From our results, *A. salviifolium* subsp *hexapetalum* showed no toxicity, its active components can be further developed into naturally based cosmetic, externally used products or even herbal drug for treatment of dermatomycotic infections.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Unison Co Ltd, Bangkok, Thailand for providing ketoconazole.

REFERENCES

Buehler EV. Experimental skin sensitization in the guinea pig. *Arch Dermatol* 1965, 91:171.