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Abstract. Microsporidia are single-celled, obligately intracellular parasites that are considered a cause of emerging
and opportunistic infections in humans.  The most common symptoms associated with microsporidiosis are
persistent and self-limiting diarrhea in immune-deficient and immune-competent individuals, respectively.  Species
of microsporidia that infect humans also infect a wide range of animals which raises a concern for zoonotic
transmission.  Microsporidian spores are environmentally resistant and have been identified in various water
sources, also raising a concern for water- and food-borne transmission.  Microsporidia can be detected in patient
specimens such as urine, feces, and tissue biopsies by staining with calcofluor white, concentrated trichrome,
Gram, or immunofluorescent antibody but species identification usually requires detection by PCR-based
techniques.  Improved diagnostic methods are being used to address the epidemiology of microsporidiosis and
recent studies indicate that individuals most at risk for infection include persons with AIDS, immune-suppressed
organ transplant recipients, malnourished children, travelers, and the elderly.  Risk factors have included eating
undercooked meat and exposure to water through recreational or occupational exposure or through drinking
water.  Strategies, therefore, are being developed to identify and remove or disinfect species of microsporidia
present in water sources that pose a risk for transmission to humans and animals.

water-borne transmission of microsporidia (Franzen
and Müller, 1999a; Deplazes et al, 2000).

BIOLOGY OF MICROSPORIDIA

Structure / Morphology
Microsporidia are single-celled, obligately

intracellular eukaryotic parasites that infect protozoa,
invertebrates, and vertebrates (Canning and Lom,
1986).  Spores of microsporidian species that infect
mammals are small and oval in shape, measuring
approximately 1.0 - 2.0 μm × 1.5 - 4.0 μm (Canning
and Lom, 1986; Vavra and Larrson, 1999).  Micro-
sporidian spores are  surrounded by an outer electron-
dense exospore composed of glycoprotein, an electron-
lucent endospore composed of chitin, and an inner
plasma membrane.  The chitinous spore wall is
believed to contribute to the persistence of micro-
sporidia in the environment.  The nucleus in micro-
sporidia exists either as a monokaryotic single nucleus
(eg Encephalitozoon, Enterocytozoon, Pleistophora,
and Trachipleistophora species) or as a diplokaryon
with two adjoined nuclei that function as a single unit
(eg Brachiola, Nosema, and Vittaforma species).
Mature microsporidian spores contain a distinct
posterior vacuole which provides a useful diagnostic
characteristic for identifying microsporidia in stained
tissue sections or smears.   An anchoring disc and
Golgi-like membranous polaroplast are located in the
anterior region of the spore.  The polar filament, a
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INTRODUCTION

Microsporidia were first recognized as the cause
of pébrine (pepper) disease in silkworms in 1857 and
since then have caused significant economic losses in
the honeybee, fish, and mink industries (Wittner, 1999).
Subclinical microsporidia infections in laboratory
animals have interfered with biomedical research
(Shadduck and Pakes, 1971; Canning and Lom, 1986;
Shadduck and Greeley, 1989), and more recently,
microsporidia have been identified as a cause of
opportunistic infections associated with persistent
diarrhea and weight loss in persons with AIDS
(Desportes et al, 1985; Modigliani et al, 1985; Kotler
and Orenstein, 1998; 1999).  With the improvement
of diagnostic methods and increased awareness,
microsporidiosis has been recognized in organ
transplant recipients, travelers, children, and the elderly
(Bryan et al, 1997; Bryan and Schwartz, 1999;
Schwartz and Bryan, 1999; Deplazes et al, 2000).
Species of microsporidia that infect humans also have
been identified in animals and water sources, raising
public health concerns for zoonotic, food-borne, and
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unique structure found in microsporidia, is a hollow
tube arising from the anterior region that coils in the
mid-to-posterior region of the spore and is used during
germination to infect the host cell (Undeen, 1990;
Keohane and Weiss, 1999).  Although microsporidia
are true eukaryotes, microsporidia contain prokaryote-
like ribosomes that are closely associated with
endoplasmic reticulum scattered throughout the
cytoplasm and they lack of true peroxisomes and
mitochondria.   Further descriptions on the
ultrastructure and morphology of microsporidia may
be found in the excellent reviews by Canning and Lom
(1986), Cali and Takvorian (1999), Vavra and Larrson
(1999), and Desportes-Livage (2000).

Taxonomy and phylogeny
The first micro-sporidian was named Nosema

bombycis by Nägeli in 1857 who grouped this organism
with the Schizomycetes (Nägeli, 1857).  Balbiani then
created the order of Microsporidia in 1882, and in 1976,
Sprague established the phylum Microspora which was
then classified in the subkingdom Protozoa within the
kingdom of Protista that was established in 1980 by
Levine (Balbiani, 1882; Sprague, 1976; Levine et al,
1980; Wittner, 1999).  The phylum name was then
changed to Microsporidia, Balbiani, 1882 (Sprague and
Becnel, 1998).

The taxonomy and phylogeny of the microsporidia
was questioned when Vossbrinck et al (1987) reported
that the small subunit rRNA gene sequences of
Variamorpha necatrix were found to more closely
resemble those of prokaryotes than eukaryotes,
suggesting that microsporidia were ancient eukaryotes.
The absence of typical eukaryote-like Golgi and
mitochondria further supported this early lineage
(Vavra and Larrson, 1999), but molecular phylogenetic
analyses of microsporidian gene sequences for α- and
ß-tubulin, the largest subunit of RNA polymerase II,
TATA-box-binding protein, translation elongation
factors EF-1α and EF-2, and glutamyl tRNA synthase,
supported a closer relationship between the
microsporidia and the fungi (Edlind et al, 1996; Germot
et al, 1997; Hirt et al, 1997; 1999; Cavalier-Smith,
1998; Peyretaillade et al, 1998; Fast et al, 1999;
Keeling et al, 2000; Van de Peer et al, 2000; Katinka
et al, 2001; Keeling and Fast, 2002; Williams et al,
2002).  Based on studies of the E. cuniculi genome,
few genes appeared to be related to energy production
and tricarboxylic acid cycle-related genes were absent
(Katinka et al, 2001; Vivarès et al, 2002).  The presence
of genes encoding for mitochondrion-like pyruvate
dehydrogenase, superoxide dismutation, and Fe-S
cluster assembly, however, suggested to Vivares et al
(2002) that microsporidia may contain a cryptic

organelle, the mitosome, that retains some
mitochondrial functions, comparable to the residual
mitochondrion-derived organelle described in
Entamoeba histolytica and related to the mitochondrion
of aerobic eukaryotes. Furthermore, the identification
of mitochondrial-like HSP70 genes in several
microsporidia suggested a secondary loss of
mitochondria and that the endosymbiosis of
mitochondria occurred prior to the emergence of the
microsporidia (Germot et al, 1997; Keeling et al, 2000;
Vivarès et al, 2002; Williams et al, 2002).

Of the nearly 1,200 species of microsporidia that
have been identified, 14 species have been reported to
infect humans  (Weiss and Vossbrinck, 1999).  The
taxonomic classification of the microsporidia has been
based primarily on life cycle and ultrastructural
characteristics that include the size of developing and
mature organisms, nuclear arrangement, number and
alignment of polar filament coils, intracellular location
of development, and modes of nuclear and cellular
division (Sprague et al, 1992; Cali and Takvorian,
1999; Canning and Vavra, 2000; Desportes-Livage,
2000; Weiss, 2000).

Molecular biology, biochemistry, and immunology
approaches have become useful for higher taxonomic
classification among the microsporidia including the
identification of intermediate hosts of aquatic
microsporidian species and the recognized variation
within species of microsporidia that infect humans
(Weiss and Vossbrinck, 1998; Weiss, 2000).  Intraspecies
variation of E. cuniculi, for example, was first raised by
Weiser (1964, 1965) who observed that infections of
dogs and foxes resulted in clinically-significant renal
disease whereas rabbits and mice chronically infected
with E. cuniculi rarely developed clinical signs of
disease.  This was further corroborated after eight
isolates of E. cuniculi from dogs, rabbits, and mice were
compared by SDS-PAGE, Western immunoblot assay,
and rDNA nucleotide sequencing.  By all three assays,
the isolates segregated into three genotypes with the most
notable marker being the number of 5´-GTTT’3´ repeats
identified in the ITS region of the rDNA sequences
(Didier et al, 1994).  Strain (genotype) I, originally
isolated from a rabbit, was found to contain three repeats.
Strain II was originally isolated from mice and was found
to contain two repeats, and strain III, originally isolated
from dogs, contained four repeats.  Currently, at least
six genotypes of  E. cuniculi have been identified by
random amplification of polymorphic DNA (RAPD),
restriction fragment length polymorphism (RFLP)
analysis, analysis of repetitive sequences in genes
encoding the spore wall protein and polar tube protein,
and karyotype analysis by pulsed-field gel
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electrophoresis (PFGE) (Biderre et al, 1994, 1995, 1999;
Mathis et al, 1996; 1997; Xiao et al, 2001a).  E. hellem
diversity was first noted by Hollister et al (1995) based
on protein profile analyses and four genotypes have been
found by PFGE, rDNA ITS nucleotide sequencing, and
single-stranded conformation polymorphism (SSCP)
analysis (Mathis et al, 1999; Sobottka et al, 1999; Peuvel
et al, 2000; Delarbre et al, 2001; Fedorko et al, 2001;
Xiao et al, 2001b; Haro et al, 2003).  To date, no diversity
has been identified among E. intestinalis isolates
(Sobottka et al, 1999; Liguory et al, 2000).

Genotype diversity within E. bieneusi was first
described by Rinder et al (1997) who detected nine
polymorphic sites within the rDNA ITS region of 12
human fecal specimens which segregated into three
genotypes.  After E. bieneusi was identified in pigs,
dogs, cats, and non-human primates, five genotypes
emerged with the genotype of the human E. bieneusi
isolates differing from the genotypes of E. bieneusi
identified in the other hosts (Breitenmoser et al, 1999;
Mathis et al, 1999; Liguory et al, 2000).  As more
isolates from a broader range of hosts were
characterized, at least 31 genotypes of E. bieneusi now
have been identified including some that were shared
between isolates from human and non-human hosts
(Dengjel et al, 2001; Sadler et al, 2002; Sulaiman et
al, 2003; Rinder et al, 2000; 2004).

Genome
The microsporidian genome is relatively small

among the eukaryotes, although estimates of genome
sizes of different microsporidia suggest a broad range
among these species.  The haploid genome of E.
cuniculi is only 2.9 megabase (Mb) pairs on 11
chromosomes with an estimated 1,997 protein-coding
genes (Biderre et al, 1995, 1999; Katinka et al, 2001).
The genome of Encephalitozoon intestinalis is even
smaller at 2.3 Mb (Biderre et al, 1999).  Glugea
atherinae, a microsporidian that infects fish, has a
genome size of ~ 20 Mb, arrayed on 16 chromosomes
(Biderre et al, 1994), while the genomes of several
Nosema species range from 5-7 Mb (Malone and
McIvor, 1995).  The compact genome of E. cuniculi is
characterized by reduced intergenic spacers and by the
shortness of most putative proteins relative to their
eukaryote orthologues.   A lack of genes for several
biosynthetic pathways and the tricarboxylic acid cycle
suggested to Katinka and colleagues (2001) that E.
cuniculi exhibits a strong dependence on host
metabolites.  Few E. cuniculi genes have introns, and
pseudogenes do not seem to be present.   The genomes
of several other microsporidian species are being
studied, including Spraguea lophii (Hinkle et al, 1997)
and Vittaforma corneae (Mittleider et al, 2002), both

of which include retrotransposable elements unlike E.
cuniculi.

Life cycle
The life cycle of microsporidia species that infect

humans is direct and relatively simple (Canning and
Lom, 1986; Canning and Hollister, 1992; Didier et al,
1998).  Most infections seem to occur through ingestion
or inhalation of microsporidian spores because typical
primary sites of infection include epithelium of the
small intestinal and respiratory tracts, respectively.
Vertical transmission has occurred in carnivores,
horses, rabbits, rodents, and non-human primates, but
has not been reported in humans (Canning and Lom,
1986; Shadduck and Orenstein, 1993; Snowden et al,
1998; Didier et al, 1998; 2000).  Transmission through
trauma was reported to occur rarely in humans
(Canning and Lom, 1986), and experimentally,
microsporidiosis has been transmitted to animals
through intraperitoneal, intravenous, intrarectal,
intratracheal, and intracerebral inoculation routes
(Shadduck and Orenstein, 1993; Weber et al, 1994;
Snowden et al, 1998).

Microsporidia infect host cells by injecting their
spores contents into the host cell during germination.
Germination is initiated through a change in pH or
osmotic pressure, causing the posterior vacuole and
polaroplast to swell due to water uptake which in turn
exerts pressure within the spore and results in the
propulsion of the spore contents through the everting
polar filament into the host cell (Undeen, 1990;
Keohane and Weiss, 1999).  The organisms then
multiply through the process of merogony and
differentiate into spores through the process of
sporogony (Canning and Lom, 1986; Canning and
Hollister, 1992).

E. bieneusi, the only species assigned to the genus
Enterocytozoon, is the most common species reported
to infect humans and infects a wide range of animals.
Multinucleated merogonial plasmodia contain
electron-lucent clefts and develop in direct contact with
the host cell cytoplasm (Desportes et al, 1985; Cali
and Owen, 1990; Cali and Takvorian, 1999; Vavra and
Larrson, 1999; Desportes-Livage, 2000).  During
sporogony, organelles develop further and electron-
dense disks can be observed to join and form polar
filaments around each nucleus within the sporogonial
plasmodium.  Cytokinesis then occurs resulting in
individual mature spores separating from the
plasmodium.  E. bieneusi infections usually remain
localized to the small intestine and biliary tract with
mature spores being shed with the feces (Weber et al,
1994; Kotler and Orenstein, 1998, 1999).  E. bieneusi
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spores measure approximately 1.0 x 1.5 μm and are
among the smallest of the microsporidia.  These spores
are surrounded by a relatively thin chitinous endospore,
possess a single nucleus, and contain a polar filament
that usually coils six times in a double-row alignment.

E. cuniculi is the type species of the genus
Encephalitozoon and also has a wide host range among
mammals, including humans.  E. hellem and E.
intestinalis were identified later in patients with AIDS
(Canning and Lom, 1986; Weber et al, 1994; Didier
1998, 2000; Cali and Takvorian, 1999), and a fourth
species, E. lacertae, was recently described in skinks
but has not been reported to infect mammals (Koudela
et al, 1998).  Encephalitozoon organisms replicate by
binary division within a membrane-bound
parasitophorous vacuole (PV).  Meronts,  the larger
less mature stages, are primarily found closely
associated with the PV membrane.  During sporogony,
the plasma membranes thicken and organelles such as
the polar filament and endoplasmic reticulum can be
observed.  Sporonts may continue to divide by binary
division, become more electron dense, and are more
centrally located within the PV (Canning and Lom,
1986; Cali and Takvorian, 1999).  E. intestinalis also
secretes an extracellular matrix substance which
surrounds the developing organisms in the PV
(Orenstein et al, 1992; Cali et al, 1993).  As organisms
continue to replicate, the PV and host cell plasma
membranes eventually rupture to release spores.
During the early stages of infection while
Encephalitozoon is still found in the intestinal tract,
spores are shed in the feces.  Encephalitozoon species
typically disseminate to various sites, including the
kidney, after which spores are typically shed with urine
(Weber et al, 1994; Kotler and Orenstein, 1998, 1999).
Encephalitozoon spores measure approximately 2.0 ×
4.0 μm and contain a polar filament that coils 4 - 8
times, usually in single row alignment.

CLINICAL SYNDROMES

The competence of the immune system is a major
factor that influences the clinical course of
microsporidiosis in mammals.  Immunologically
competent hosts that were either naturally or
experimentally infected with E. cuniculi usually
developed clinically silent chronic infections, although
clinical signs were sometimes evident early after
infection (Shadduck and Orenstein, 1993; Weber et al,
1994; Kotler and Orenstein, 1998; 1999; Snowden et
al, 1998; Snowden and Shadduck, 1999).  Mice
experimentally infected with E. cuniculi, for example,
sometimes developed ascites which resolved within

two weeks of inoculation, and infected rabbits
occasionally developed motor paralysis, convulsions,
and torticollis (Snowden et al, 1998; Snowden and
Shadduck, 1999).  In otherwise healthy humans such
as travelers, self-limiting diarrhea of about two-to-three
weeks’ duration has been reported (Sandfort et al, 1994;
Albrecht and Sobottka, 1997; Raynaud et al, 1998;
Thielman and Guerrant, 1998; Lopez-Velez et al, 1999;
Okhuysen, 2001).  E. cuniculi-infected rabbits and
rodents typically remain persistently infected unless
treated, but it is unclear if immunocompetent humans
infected with microsporidia clear their infections or
remain infected.

Immune-compromized hosts infected with
microsporidiosis often developed disease that
contributed to death (Shadduck and Orenstein, 1993;
Weber et al, 1994; Snowden et al, 1998; 1999; Didier
et al, 1998; 2000).  Immunedeficient athymic, SCID,
and gamma-interferon receptor knock-out mice
experimentally infected with Encephalitozoon spp, T.
hominis, or V. corneae, for example, developed lethal
hepatitis and ascites, and rabbits chronically infected
with E. cuniculi and then immunosuppresed with
cyclophosphamide developed incontinence, ataxia,
tremor, paresis, and paralysis of the hind limbs prior
to death (Schmidt and Shadduck, 1983; Koudela et al,
1993; Silveira et al, 1993; Didier et al, 1994; Silveira
and Canning, 1995; Hollister et al, 1996; Horvath et
al, 1999; Khan and Moretto, 1999; Salat et al, 2001).
Animals with immature immune systems also are at
risk.  Examples include E. cuniculi infections that were
associated with spontaneous abortions in squirrel
monkeys, renal failure in puppies, and placentitis and
abortion in horses (Shadduck et al, 1978; Zeman and
Baskin, 1985; van Rensburg et al, 1991; Snowden et
al, 1999; Patterson-Kane et al, 2003).

Among immunocompromized humans, AIDS
patients with ≤100 CD4+ T cells/μl blood and infected
with microsporidia species such as E. bieneusi and E.
intestinalis, often developed persistent diarrhea
accompanied by fever, loss of appetite, weight loss,
and wasting disease (Weber et al, 1994; Kotler and
Orenstein 1998, 1999; Dascomb et al, 1999).
Encephalitozoon infections in persons with AIDS also
disseminated to cause encephalitis, sinusitis, hepatitis,
myositis, keratitis, pneumonia, or peritonitis (Weber
et al, 1994; Kotler and Orenstein, 1998, 1999).
Immunosuppressed organ transplant recipients with E.
bieneusi and Encephalitozoon infections likewise
developed fatigue, fever, nausea and diarrhea (Kotler
and Orenstein, 1998; Gumbo et al, 1999).  Children
living in the tropics who were infected with
microsporidia, primarily E. bieneusi, developed
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persistent diarrhea, most likely exacerbated by immune
compromize resulting from malnutrition (Hautvast et
al, 1997; Desportes-Livage et al, 1998; Valperga et al,
1999; Tumwine et al, 2002; Wanachiwanawin et al,
2002).  The elderly in Spain also appeared to be more
susceptible to microsporidiosis due to decreasing
immune competency associated with aging (Lores et
al, 2002).  E. bieneusi infections in immune-deficient
individuals usually remained localized to the small
intestine, but biliary tract involvement leading to
cholangitis and cholecystitis also has occurred.
Malabsorption, decreased mucosal surface area, and
immaturity of villus epithelial cells are believed to
contribute to the diarrhea caused by E. bieneusi
infection (Kotler and Orenstein, 1998, 1999).
Encephalitozoon, Trachipleistophora and Pleistophora
species usually disseminate to cause sinusitis,
keratoconjunctivitis, hepatitis, myositis, peritonitis,
nephritis, encephalitis, or pneumonia in immune-
deficient individuals.

In contrast to immunedeficient hosts, E. cuniculi-
infected carnivores such as dogs and blue foxes
developed hypergammaglobulinemia that led to
immune-complex formation and often fatal renal
disease (Nordstoga, 1976; Canning and Lom, 1986;
Shadduck and Orenstein, 1993; Didier et al, 1998;
Snowden et al, 1998).  These findings support the
importance of a well-regulated immune response for
controlling the pathogenesis of microsporidia
infections.

DIAGNOSIS

Serology
Several serological methods have been applied

toward detection microsporidia-specific antibodies in
mammals, including immunofluorescent antibody
staining, complement fixation, enzyme-linked
immunosorbent assay (ELISA), and Western
immunoblot assays (Weber et al, 1999, 2000; Garcia,
2002).  These tests were limited to species of
microsporidia that could be grown in culture for
generating the antigens required to perform these
assays.  Earlier serological tests, therefore, were used
to identify antibodies to E. cuniculi which was the first
mammalian microsporidian that could be grown in
culture (Shadduck, 1969) and were applied for culling
infected animals to establish E. cuniculi-free colonies
(Bywater and Kellett, 1978; Shadduck and Geroulo,
1979; Pakes et al, 1984; Shadduck and Baskin, 1989;
Boot et al, 2000).  E. bieneusi has not yet been grown
in long-term culture and HIV-infected immune-
deficient individuals fail to produce antibodies, so
serology for identifying humans with microsporidia

infections has been limited to non-HIV-infected
persons infected with species that could be cultured in
vitro (van Gool et al, 1997; Kucerova-Pospisilova and
Ditrich, 1998; del Aguila et al, 2001; Kucerova-
Pospisilova et al, 2001).  Serological applications for
identifying humans with microsporidiosis are
improving, but interpretation of serological results
remain complicated because it is not yet possible to
discern between current infections, resolved infections,
or exposures to microsporidia that do not establish
infection but induce cross-reacting antibodies.  As such,
more definitive diagnostic procedures in humans
generally rely upon detection of microsporidia by
microscopy and molecular-based methods.

Microscopy
Transmission electron microscopy (TEM) long has

been the standard for specifically identifying
microsporidia based on observing the polar filament
(Orenstein et al, 1990, 1992).  TEM is important for
observing and describing the ultrastructural features
of developing and mature organisms and often can be
used to identify organisms to the genus and species
level.  TEM requires a high degree of technical
expertise and is costly, time-consuming, and insensitive
for routine diagnosis in large-scale studies (Franzen
and Müller, 1999; Weber et al, 1999, 2000).

Histochemical methods are commonly used in
diagnostic laboratories to identify microsporidia in
urine, stool, aspirates, and tissue biopsies, and excellent
descriptions of these techniques can be found in
reviews by Weber et al (1994, 1999, 2000), Weber and
Canning (1999), and Garcia (2001, 2002).  Optical
fluorescent brighteners such as Uvetix 2B, Calcofluor
White, and Fungifluor are relatively sensitive and time-
efficient for screening most types of specimens to
detect microsporidia.  These optical brighteners bind
to chitin in the spore wall and  stained microsporidia
appear white-to-turquoise under fluorescence
microscopy with an excitation filter in the range of
350-440 nm.  Small yeasts also contain chitin and stain
with optical fluorescent brighteners resulting in some
false positive results.  The modified trichrome
(concentrated chromotrope 2R) and Gram-
chromotrope stains, though perhaps less sensitive than
the fluorescent brighteners, appear to be more specific
for identifying microsporidia in fluids and stool
specimens.  Microsporidia appear pink against a blue
or green counterstained background and contain a
central pink band and posterior vacuole which are
useful indicators for discerning these organisms from
yeasts which also stain pink.  Immunofluorescent
antibody staining methods are useful for detecting
microsporidia in fluids, stool specimens and tissue

MICROSPORIDIOSIS IN HUMANS
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biopsies but are limited by availability of specific
antisera.  Gram stains (Brown-Brenn and Brown-
Hopps) are useful for detecting microsporidia in tissue
biopsies where organisms appear dark blue-to-purple
against a yellow background, and silver stains (eg
Warthin-Starry) also have been applied for detecting
microsporidia in tissue sections where organisms
appear black against a yellow background.  Gram and
silver stains are not typically used for identifying
microsproidia in fecal smears.  Giemsa and modified
trichrome stains are less commonly used for identifying
microsporidia in tissue sections and microsporidia stain
poorly with H&E stain.

Polymerase chain reaction (PCR)-based methods
PCR-based methods are increasingly applied in

diagnostic and research laboratories for species-
specific identification of microsporidia  (Fedorko and
Hijazi, 1996; Weiss and Vossbrinck, 1998; Franzen and
Müller, 1999b; Weiss, 2000; Garcia, 2002).  DNA
extraction from microsporidia requires the disruption
of the spore wall, either by glass-bead beating, boiling,
and digestion with proteinase K, lyticase, and chitinase
or can be accomplished by use of commercially-
available kits.  Primers generally employed for
diagnostics target, the rRNA genes of the
microsporidia, and the most thorough compilation of
these primer sequences can be found in the review by
Franzen and Müller (1999b).  Species identification
can be accomplished by use of species-specific primers.
Alternatively, if pan-microsporidian primers are used
(ie, primers that amplify more than one microsporidian
species), species identification can be determined by
subjecting the amplicons to nested PCR with a second
set of specific primers, restriction enzyme digestion
to generate a restriction fragment-length polymorphism
(RFLP) pattern, nucleotide sequencing for BLAST
analysis, Southern analysis using species-specific
probes, or heteroduplex mobility shift anlaysis
(Franzen and Müller, 1999b).

EPIDEMIOLOGY

Microsporidia species that infect humans also
infect a wide range of animals that shed organisms
into the environment, increasing the probability for
human exposure to microsporidia.  Although diagnostic
methods are improving, microsporidiosis still is
probably widely underdiagnosed in humans.  Species
of microsporidia that infect humans are small and easily
overlooked and reagents for specific diagnostic
methods such as species-specific antibodies are not
always commercially available.  Microsporidia often
cause non-specific symptoms and often are not

included on differential diagnoses, and many
parasitology diagnostics laboratories do not stain or
test for microsporidia unless specifically requested.

Prevalence and natural history
Microsporidiosis in humans occurs world-wide,

but prevalence data vary widely because of concerns
about the reliability of detection methods (Bryan and
Schwartz, 1999).  Prior to the AIDS pandemic,
microsporidiosis was only rarely identified in humans
(Canning and Lom, 1986; Kotler and Orenstein, 1999),
and prevalence data for microsporidiosis in human
populations before the era of AIDS relied upon
serology for detecting antibodies to E. cuniculi which
was the only mammalian-derived microsporidian that
could be grown in culture to provide antigens needed
for the assays.  These early seroprevalence results
ranged from 0 - 42% with the highest rates found in
homosexual men in Sweden and in persons with other
parasitic infections (Singh et al, 1982; Canning and
Lom, 1986; Hollister et al, 1987; 1991).  Additional
species of microsporidia now have been identified in
humans, and persons with other parasitic infections
often undergo polyclonal activation of lymphocytes
leading to the expression of cross-reacting antibodies
and false-positive results for microsporidia.
Serological techniques have been applied recently with
additional species of microsporidia for detecting
microsporidia-specific antibodies in HIV-seronegative
individuals such as blood donors, slaughterhouse
workers, dog breeders, forestry workers, and pregnant
women.  These seroprevalence rates ranged from 1.3 -
8.0 % suggesting that microsporidiosis exists in non-
HIV-infected populations (van Gool et al, 1997; del
Aguila et al, 2001; Kucerova-Pospisilova et al, 2001).

Serological tests are unreliable in persons with
HIV/AIDS due to immune deficiency so prevalence
studies in these individuals have been based on
microscopy or PCR-based detection of microsporidia
in clinical specimens.  In these studies,  prevalence
rates ranged from approximately 5 - 50%, varying by
geographic location and diagnostic techniques (Weber
et al, 1994; Van Gool et al, 1995; Kyaw et al, 1997;
Enriquez et al, 1998; Sobottka et al, 1998; Brasil et al,
2000; Deplazes et al, 2000; Ferreira, 2000).  Bryan
and Schwartz (1999) estimated an overall prevalence
of microsporidiosis at 15% of AIDS patients.

Some debate existed about whether micro-
sporidiosis in HIV-infected individuals was associated
with clinical disease because some individuals who
were found to shed microsporidia in their feces were
not exhibiting gastrointestinal symptoms (Rabeneck
et al, 1993, 1995).  A retrospective review of HIV-
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infected patients with enteric microsporidia infections
was conducted through the National Institutes of
Health-sponsored AIDS Clinical Trials Groups
(ACTG) to better understand the natural history of
microsporidiosis (Dascomb et al, 1999).  The results
of this study found that most HIV-infected individuals
with microsporidiosis remained symptomatic after six
months of initial diagnosis with persistent diarrhea and
weight loss greater than 10% of baseline body weight.
In other studies, microsporidia were the only enteric
pathogens detected in HIV-infected individuals with
diarrhea, further supporting an association between
microsporidia infection and ensuing disease in
immunocompromized individuals (Kotler and
Orenstein, 1998, 1999).

Microsporidiosis also has been identified in a wide
range of non-HIV-infected individuals but prevalence
data based on parasite detection per se are lacking (Bryan
et al, 1997; Bryan and Schwartz, 1999).  Ocular
infections due to microsporidia in non-HIV-infected
individuals have been reported prior to and since the
AIDS pandemic (Ashton and Wirasinha, 1973; Pinnolis
et al, 1981; Cali et al, 1991; Davis et al, 1991; Rastrelli
et al, 1994; Silverstein et al, 1997; Theng et al, 2001;
Mietz et al, 2002).  Other groups of non-HIV-infected
individuals with microsporidiosis included travelers
(Sandfort et al, 1994; Fournier et al, 1998; Raynaud et
al, 1998; Thielman and Guerrant, 1998; Lopez-Velez et
al, 1999; Okhuysen, 2001; Müller et al, 2001),
malnourished children (Hautvast et al, 1997; Desportes-
Livage et al, 1998; Valperga et al, 1999; Mungthin et
al, 2001), organ transplant recipients (Sax et al, 1995;
Rabodonirina et al, 1996; Kelkar et al, 1997; Gumbo et
al, 1999; Guerard et al, 1999; Goetz et al, 2001; Sing et
al, 2001; Mohindra et al, 2002; Mahmood et al, 2003),
and the elderly (Lores et al, 2002).

Risk factors associated with infection
Microsporidia have been found throughout the

environment and in a wide range of hosts, but relatively
little is known about the risk factors most commonly
associated with transmission of microsporidia
infections to humans.  Among the first reports to
address this was a serological study in which 33% of
homosexual men in Sweden expressed antibodies to
E. cuniculi suggesting that homosexual practices may
contribute to horizontal transmission of micro-
sporidiosis (Bergquist et al, 1984) and subsequent
epidemiological studies further supported that
homosexual preference was a risk factor for intestinal
microsporidiosis among HIV-infected men (Birthistle
et al, 1996; Hutin et al, 1998).  Additional risk factors
associated with microsporidiosis in HIV-infected
individuals included immune deficiency, eating

undercooked beef at least once a month, exposure to
water by swimming in a pool, use of a hot tub or spa,
occupational contact with water, and animal exposure
through contact with horses or being stung by a bee,
hornet, or wasp (Hutin et al, 1998; Bryan and Schwartz,
1999; Schwartz and Bryan, 1999; Dascomb et al, 2000;
Deplazes et al, 2000; Mota et al, 2000).

Sources
Likely reservoirs of microsporidia species that can

be transmitted to humans include other infected
humans, animals, and water.  Microsporidia are shed
into the environment with the feces and urine from
infected hosts, and the observation that microsporidia
infections commonly are found in the respiratory and
intestinal tracts of infected individuals supports the
likelihood that  fecal-oral, oral-oral, inhalation of
contaminated aerosols, and ingestion of contaminated
food and water are probable modes of transmission
(Kotler and Orenstein, 1998; Bryan and Schwartz,
1999; Schwartz and Bryan, 1999; Deplazes et al, 2000;
Mota et al, 2000; Slifko et al, 2000; Weber et al, 2000).
Species of microsporidia that infect humans also infect
a wide range of animals with which humans have
contact, and among the risk factors associated with
microsporidiosis in HIV-infected individuals were
association with animals and eating undercooked meat
(Hutin et al, 1999; Dascomb et al, 2000).  The only
direct evidence for zoonotic transmission of
microsporidiosis, however, was reported in a child who
seroconverted after being exposed to a litter of puppies
infected with E. cuniculi (McInnes and Stewart, 1991).

Indirect evidence also supports the possibility that
insects serve as a source for microsporidia infections
of humans.  Brachiola (syn. Nosema) algerae is a
natural pathogen of mosquitos and while this species
failed to cause systemic infections in rats or athymic
mice after iv or oral inoculations, localized infections
developed after subcutaneous inoculations in the tail,
feet, or ears of these hosts suggesting that the growth
of B. algerae was limited to environments at
temperatures below 37° C (Vavra and Undeen, 1970;
Undeen and Alger, 1976; Trammer et al, 1997).  B.
algerae, however, sub-sequently was identified and
isolated from the cornea of an immune-competent
individual and adapted for culture at 37° C (Visvesvara
et al, 1999; Moura et al, 1999; Lowman et al, 2000;
Visvesvara, 2002).  Subsequently, Koudela and
colleagues (2001) found that application of B. algerae
spores onto the eyes of SCID mice failed to cause
clinical signs of infection at the site of inoculation but
infections were observed 60 days later in the spleen
and liver.  Of particular interest was the report by Cali
et al (2003; and this proceeding) who described a case

MICROSPORIDIOSIS IN HUMANS
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Table 1
Microsporidia species of humans and putative sources.

Microsporidia speciesa Other animal hosts Environmental sources

Brachiola (syn. Nosema) algerae Mosquito None reported

Brachiola (syn. Nosema) connori None reported None reported

Brachiola vesicularum None reported None reported

Encephalitozoon cuniculi Wide range of mammals None reported
including rodents, carnivores,
non-human primates

Strain I Rabbit
Strain II Mouse, blue fox, wild rat
Strain III Dog, prosimian

Encephalitozoon hellem Birds None reported

Encephalitozoon intestinalis Dog, donkey, pig, cow, Ground water, surface water
goat, gorilla sewage effluent, irrigation

crop water

Enterocytozoon bieneusi Pig, cat, dog, goat, chicken, Surface water, swimming
cow, rabbit, muskrat, fox, pool, river water
racoon, beaver, and non-
human primates

Nosema ocularum None reported None reported
Nosema spp Insects Ditch water

Pleistophora spp Fish Ditch water, river water, crop
irrigation water

Pleistophora ronneafiei None reported None reported

Trachipleistophora anthropophthera None reported None reported

Trachipleistophora hominis None reported None reported

Vittaforma corneae None reported River water, tertiary effluent

a Microsporidia that infect humans but are unclassified include Microsporidium africanum and Microsporidium ceylonensis.

of myositis due to B. algerae in a diabetic woman with
rheumatoid arthritis, now demonstrating that this
organism of mosquitos can cause deep tissue infection
in humans.

Mounting evidence supports the probability that
water sources serve as reservoirs of microsporidia
infections of humans.  Contact with water was one of
the risk factors associated with transmission of
microsporidiosis in epidemiological studies (Hutin et
al, 1998; Dascomb et al, 2000) and species of
microsporidia that infect humans including E.
intestinalis, E. bieneusi, Nosema species, Pleistophora
species, and V. corneae, have been identified in ground,

surface, ditch, and crop-irrigation water sources (Avery
and Undeen, 1987; Sparfel et al, 1997; Dowd et al,
1998; Fournier et al, 2000, 2002; Thurston-Enriquez
et al, 2002).  E. bieneusi spores were identified in the
feces of fur-bearing animals that closely associate with
surface water (Sulaiman et al, 2003), and an increased
rate of microsporidiosis was associated with people
living near water distribution subsystems in France
(Cotte et al, 1999).  In addition, several characteristics
of microsporidia favor the probability for water-borne
transmission.  Microsporidia species infecting humans
appear to lack host specificity and could easily be
excreted with urine and feces of infected animals to
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contaminate water supplies, microsporidian spores are
environmentally resistant and survive for extended
periods of time in water, the spores are relatively small
and not easily trapped by filtration, and the infectious
dose is probably reasonably low (Franzen and Mueller,
1999a).  These factors plus the identification of
microsporidia in water prompted the United States
Environmental Protection Agency to include E.
bieneusi and E. intestinalis, the two most commonly-
identified microsporidians that infect humans, on the
microbial candidate contaminant list in response to the
Safe Drinking Water Act (http://www.epa.gov/
safewater/ccl/cclfs.html).

ENVIRONMENTAL STUDIES

Methods to assess viability and infectivity
Questions exist about whether the microsporidia

identified in water sources are viable and infectious,
and thus pose a risk for transmission to humans and
animals.  Viability staining and infectivity assays are
being applied to address these issues.  Ethidium
bromide and acridine orange have been used to identify
dead and live E. cuniculi spores, respectively, under
fluorescence microscopy and propidium iodide was
found to be excluded by live spores (Peterson et al,
1988).  A dual staining procedure using Calcofluor
White and Sytox Green was developed to
simultaneously discern between live and dead spores
(Green et al, 2000).  Viable spores excluded Sytox
Green, stained with Calcofluor White, and appeared
turquoise when viewed by fluorescent microscopy at
an excitation wavelength of 395-415 nm while dead

spores  stained with both Calcofluor White and Sytox
Green, and appeared yellowish-green.  Recently, a
fluorescent in situ hybridization (FISH) assay has been
applied in which viable spores with intact rRNA stained
brightly while dead spores that lost their rRNA stained
weakly (Graczyk et al, 2002).

A limiting-dilution focus-forming assay to assess
infectivity of E. cuniculi in vitro was first described
by Pye and Cox (1979).  This assay was performed by
adding serial dilutions of microsporidian spores to
culture wells of confluent host cells and either counting
the number of infected host cells or identifying the
highest dilution at which host cells were infected
approximately one week later.  Modifications of this
procedure have been applied for assessing immune
responses and drug effects on microsporidia survival
in vitro (Schmidt and Shadduck, 1984; Beauvais et al,
1994; Didier et al, 1994; Franssen et al, 1995).
Infectivity of microsporidia also has been assessed in
athymic and SCID mice which develop lethal disease
after inoculation with as few as 10 E. cuniculi spores
(Schmidt and Shadduck, 1983), and Koudela et al
(1999) used this system to measure survival of E.
cuniculi after treatment in water at various temperatures
over time.

Environmental persistence
The chitinous spore wall of the microsporidia

appears to afford these organisms some protection from
various environmental conditions.  In laboratory
experiments, at least some E. cuniculi spores remained
infectious in tissue culture after incubation in medium
for 16 days at 22°C and after 98 days at 4°C, and spores

MICROSPORIDIOSIS IN HUMANS

Table 2
Diagnostics paradigm for microsporidiosisa.

Feces / urine and other fluids Tissue section (biopsy)

Screening Fluorescent optical brighteners Fluorescent optical brighteners
Calcofluor White Calcofluor White
Fungifluor Fungifluor
Uvitex B Uvitex B

Corroboration Modified trichrome stain Gram stain
(Chromotrope 2R) Brown-Brenn

Brown-Hopps

Species identification PCR-based methods (rDNA) Immunofluorescent antibody stain
PCR-based methods (rDNA)

a Protocols for (immuno)histochemistry methods can be found in Garcia and Bruckner (2001, 2002) and PCR-based methods can
be found in Franzen and Müller (1999b).
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that were dried and then incubated at 22°C at 0 - 2%
humidity for 28 days also remained infectious (Waller,
1979).  Freezing and thawing or incubation in distilled
water failed to kill all E. cuniculi spores, and organisms
survived at least 24 hours after incubation at pH 4 and
pH 9 (Shadduck and Polley, 1978).  Koudela et al
(1999) reported similar results by demonstrating that
sufficient numbers of E. cuniculi spores remained
capable of causing lethal infections in SCID mice after
incubation in distilled water for two years at 4°C or
after freezing at -12°C and -24°C for 24 hours.
Recently, Fayer and colleagues determined that E.
intestinalis and E. hellem, like E. cuniculi, were still
able to infect host cells in culture after incubation in
water at temperatures ranging from 10° - 30°C for
weeks to months (Li et al, 2003).  Interestingly, E.
intestinalis was found to be hardier than E. hellem and
E. cuniculi.  These findings then, indicated that
microsporidia have the potential to persist in fresh
water, salt water (ie after incubation in tissue culture
medium), or after dehydration for extended periods of
time at ambient temperatures and thus likely pose a
health risk for transmission to susceptible hosts.

Capture and identification strategies
The United States Environmental Protection

Agency published methods 1622 and 1623 for
identifying and determining the concentration of the
parasites, Cryptosporidium parvum and Giardia
lamblia from water sources, and these approaches now
are being modified and applied for detecting and
identifying microsporidia (http://www.epa.gov/
nerlcwww/ ).  These procedures utilize pre-enrichment
filtration followed by immunomagnetic bead
separation (IMS) assay and detection by immuno-
fluorescence antibody staining (FA).  Variations on this
approach for detecting microsporidia in water samples
include application of the IMS followed by PCR
(Dowd et al, 1999), water filtration followed by PCR
(Sparfel et al, 1997; Sorel et al, 2003), and concentra-
tion of microsporidia by continuous separation channel
centrifugation (Borchardt and Spencer, 1997).  To
simplify the enrichment phase of these protocols,
Orlandi and Lampel (2000) applied an extraction-free,
FTA filter-based template for PCR detection of
microsporidia in fecal specimens and Cyclospora
cayetanensis from raspberries under experimental
spiking conditions.   The authors suggested that this
approach could be applied to detecting pathogens in a
wide range of clinical, environmental, and food
samples.  Standardized methods to capture and identify
microsporidia in food and environmental sources
beyond the use of microscopy, however, are still being
developed and evaluated (Orlandi et al, 2002).

PREVENTION AND TREATMENT

Common sense approaches have been recom-
mended to individuals at risk for developing life-
threatening microsporidiosis such as persons with AIDS
or organ transplant recipients, who have been urged to
drink bottled or boiled water and to wash hands
appropriately (Bryan and Schwartz, 1999; Schwartz and
Bryan, 1999).  Other preventive strategies include
thorough cooking of meat, fish, and seafood, as well as
washing fruits and vegetables prior to ingestion.  Since
animals are known to be infected with microsporidian
species that infect humans, limited exposure to animals
suspected of carrying microsporidiosis may be
warranted under some circumstances.

Disinfection strategies have been evaluated and
applied to reduce the viability and potential infectivity
of microsporidia present in the environment.
Microsporidia could be killed by boiling for at least
five minutes and by application of disinfectants
including quarternary ammonium, 70% ethanol,
formaldehyde (0.3% or 1%), phenolic derivatives, 1%
hydrogen peroxide, chloramine, sodium hydroxide, or
amphoteric surfactants for 30 minutes at 22°C
(Shadduck and Polley, 1978; Waller, 1979; Santillana-
Hayat et al, 2002).  Microsporidia survival and
infectivity were reduced in water by coagulation,
sedimentation, and mixed media filtration (Gerba et
al, 2003).  Ozone treatment, ultraviolet exposure,
gamma irradiation, and chlorination at pH 7 were
effective at reducing viability and infectivity of
Encephalitozoon species, as well (Wolk et al, 2000;
Khalifa et al, 2001; Huffman et al, 2002; Li et al, 2002;
John et al, 2003; Johnson et al, 2003; Marshall et al,
2003).

Currently, two drugs are primarily being used
clinically to treat microsporidiosis in animals and
humans.  Albendazole, a benzimidazole with
anthelminthic and antifungal activity, inhibits the
polymerization of tubulin, and has been found to be
effective against Encephalitozoon species of
microsporidia.  Albendazole, however, is only variably
effective against E. bieneusi (Blanshard et al, 1992;
Dieterich et al, 1994; Kotler and Orenstein, 1999;
Conteas et al, 2000).  Fumagillin, an antibiotic
produced by the fungus Aspergillus fumigatus, is highly
effective when used topically to treat keratocon-
junctivitis due to infections with Encephalitozoon
species (Diesenhouse et al, 1993; Rosberger et al,
1993; Garvey et al, 1995; Conteas et al, 2000; Chan et
al, 2003).  When administered systemically to humans
at a dose of 20 mg three times per day, fumagillin was
highly effective against E. bieneusi, but caused



Vol 35  (Suppl 1)  2004 75

neutropenia and thrombocytopenia in some patients
(Molina et al, 2002).  TNP-470 (also named AGM-
1470) was less toxic in laboratory animals and was as
effective as fumagillin against several species of
microsporidia in tissue culture and in infected athymic
mice, but has a shorter half-life than fumagillin (Didier,
1997; Coyle et al, 1998).  Additional drugs with
variable results that have been reported for treating
microsporidiosis in humans, include metronidazole,
furazolidone, sinefungin, atovaquone, azithromycin,
itraconazole, octreotide, and sulfa drugs (Canning and
Lom, 1986; Weber et al, 1994; Kotler and Orenstein,
1998, 1999; Conteas et al, 2000).  The highly active
antiretroviral therapy (HAART) presently used to treat
AIDS patients has resulted in HIV reduction and
concomitant improvement in CD4+ T cell levels with
a subsequent reduction in the prevalence of many
opportunistic infections including microsporidiosis
(Goguel et al, 1997; Carr et al, 1998; Conteas et al,
2000).

CONCLUSION

The improvement in diagnostic methods and
greater awareness has resulted in microsporidia
infections being increasingly recognized in humans.
The presence of microsporidia in water sources and in
pets and food-producing animals, along with
epidemiological risk factors that have associated
exposure to water and eating undercooked meat with
microsporidiosis in HIV-infected individuals have
further raised the concern that microsporidia infections
may be food- and water-borne parasitic zoonoses.
Additional epidemiological studies focusing on risk
factors associated with microsporidiosis will define
more clearly the sources of microsporidia in the
environment that pose a risk for transmission so that
better preventive strategies can be implemented.
Continued studies also are needed to identify with
better accuracy the presence of viable and infectious
microsporidia that may pose a risk for transmission
from various environmental sources.  Methods to
remove or inactivate microsporidia in water sources
still need to be developed, and more effective, less toxic
drugs are needed for effectively treating micro-
sporidiosis in humans and animals.
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