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Abstract. Cryptosporidium, a protozoan pathogen that causes cryptosporidiosis has 
emerged as an important source of diarrheal illness among humans and animals. 
The current routine laboratory technique used for Cryptosporidium diagnosis is 
light microscopy with acid-fast staining but the technique has low efficiency 
and sensitivity for species-specific identification. Single PCR to amplify a 220 bp 
fragment of 18 S ribosomal DNA of C. parvum and C. hominis was developed. The 
restriction enzymes, TaqI and VspI, were used to distinguish between amplicons 
of human and bovine C. parvum genotype. Water samples, collected from Lo-Na, 
Ton-Pu, Ho-Ping, and Jen-Ai, Taiwan contained only bovine C. parvum genotype 
whereas in the Ton-Pu and Jen-Ai samples C. hominis was also present. Thus, the 
used of PCR-RFLP allowed successful identification of Cryptosporidium in water 
samples and differentiation between human and bovine species.
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INTRODUCTION

Cryptosporidium spp are common 
pathogenic protozoa that cause crypto-
sporidiosis, a diarrheal illness caused by 
waterborne transmission worldwide. This 
parasite has a global distribution and is of 
veterinary and public health concern be-
cause of its ability to cause gastrointestinal 
diseases, its ubiquitous presence in the en-

vironment, and its propensity to cause wa-
terborne and foodborne outbreaks. High 
prevalence of waterborne transmission 
of cryptosporidiosis has been reported 
(Marshall et al, 1997; Barwick et al, 2000). 
For example, ten instances of cryptospo-
ridiosis outbreaks were noticed from 1984 
to 1994 (the most serious outbreak being 
in Milwaukee in 1993 with 419,914 cases).

Cryptosporidium infects a large num-
ber of vertebrate species, including hu-
mans, cats (Felis catus), and dogs (Canis 
familiaris). The Cryptosporidium genus 
currently contains at least 24 valid species 
and over 40 genotypes, most of which 
are host adapted and have a narrow host 
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range (eg, C. canis mainly in dogs, C. felis 
mainly in cats, and C. hominis in humans) 
(Thompson et al, 2008; Xiao and Fayer, 
2008). Some species or genotypes, most 
notably C. parvum and C. cervine, have a 
broader host range, which includes rumi-
nants and humans (Xiao and Fayer, 2008; 
Xiao and Feng, 2008). Within C. parvum, 2 
genotypes have been distinguished: type 
1 genotype, “human genotype” (H type) 
and type 2 genotype, “cattle genotype” (C 
type) (Peng et al, 1997). These two geno-
types are now recognized as two different 
species, C. hominis (formerly type 1) and C. 
parvum (formerly type 2) (Xiao and Fayer, 
2008; Xiao and Feng, 2008).

C. parvum has recently been implicat-
ed in waterborne outbreaks in developed 
and developing countries (Robertson and 
Gjerde, 2001; Nishi et al, 2009; Moulin et al, 
2010). In southern and central Taiwan, 
Cryptosporidium spp were found in raw 
water samples from rivers (Hsu et al, 
1999b; Hu, 2002). However, in these stud-
ies, Cryptosporidium spp were detected 
using Ziehl-Neelsen acid-fast stain and 
fluorescent antibody staining, methods 
with low sensitivity as a minimum num-
ber of 103-105 oocysts in 1 gram of fecal 
matter is required for detection (Weber 
et al, 1991). In addition, microscopic ex-
amination cannot distinguish between 
different Cryptosporidium spp. 

The purpose of this study was to 
establish a PCR method to detect the 18S 
rRNA gene of Cryptosporidium spp and 
restriction fragment length polymorphism 
(RFLP) to identify the presence of specific 
species in water samples.

MATERIALS AND METHODS

Water samples
Four samples of mountain water from 

Sinyi (Lo-Na and Ton-Pu village) and Jen-

Ai Township, Nantou County, Heping Dis-
trict, and Ho-Ping District, Taichung City 
of central Taiwan were used in this study 
(Fig 1). From each household 50 liters  
of water were collected and pumped 
through a 3 µm membrane filter (Mil-
lipore, New South Wales, Australia). The 
membrane, together with the retained 
sediment, was dissolved in 100% acetone 
and washed with 95% ethanol, followed 
by 70% ethanol (Aldom and Chagla, 1995). 
The residue of the membrane was washed 
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Fig 1–Map of Taiwan showing the sites where 
water samples were taken: Nantou and 
Taichung County 1. Ho-Ping, 2. Jen-Ai, 
3. Lo-Na, 4. Ton-Pu.
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with phosphate-buffered saline (PBS), 
and the sediment was stored in a sterile 
Eppendorf tube at 4ºC until further use.

PCR
Nucleic acids in the sediment from 

the water samples were extracted using 
an UltraClean® Soil DNA Isolation Kit 
(Mo Bio Laboratories, Solana Beach, CA) 
and stored at -20ºC before being analyzed. 
A new pair of primers to detect and 
discriminate between C. parvum and C. 
hominis was designed: forward primer, 
Cpmw-1 (5’-ACTTGATAATCTTTACTTA-
CATGGA-3’), and reverse primer, Cpmw-
2 (5’-CGTCATTGCCACGGTAG-3’). A 
total reaction volume of 50 µl, including 
2.5 µl of Cryptosporidium genomic DNA 
and 10xPCR buffer, containing 1.5 mM 
MgCl2, 0.5 µM of each primer, 200 µM 
of each dNTP, and 1 U GeNei Taq DNA 
polymerase (Bangalore Genei, India), was 
used for PCR. The thermocycling was as 
follows: 45 cycles of 94ºC for 1 minute, 
55ºC for 2 minutes, 72ºC for 1 minute, and 
a final step at 72ºC for 10 minutes.
PCR-RFLP analysis

A 10 µl aliquot of the PCR amplicon 
was digested for 2 hours at 37ºC with 10 
U of both TaqI and VspI enzymes (Gibco/

Life Technologie, Grand Island, NY) in 
35 µl of 1x React-2 buffer (Gibco/Life 
Technologies/Invitrogen). Undigested 
controls were analyzed together with 
digested fragments in 2% agarose gel-
electrophoresis at 100 V for 0.5 hour con-
taining ethidium bromide (0.5 µg/ml) in 
both the gel and running buffer.
DNA sequence analysis

The PCR amplicons were sequenced 
by Tri-I Biotech, Taiwan and sequences 
were analyzed using BioEdit software 
(Hitachi Software Engineering, Tokyo, Ja-
pan, http://www.mbio.ncsu.edu/BioEdit/
bioedit.html).

RESULTS

PCR of DNA isolated from the water 
samples generated 220 bp fragments. The 
sequence of 220 bp fragment was 100% 
identical to the sequence of C. parvum 
18S ribosomal RNA gene (AF222998) and 
C. parvum bovine genotype (AF093490) 
(Fig 2). Therefore, the DNA samples were 
identified as being specific fragments of 
Cryptosporidium 18S rDNA.

The 220 bp fragment produced by C. 
parvum and C. hominis has specific TaqI site 
that can be digested into 2 fragments of  

Cpmw1

Cpmw2

VspI

TaqI

C. hominis (AF222998) ACTTGATAAT CTTTTACTTA CATGGATAAC CGTGGTAATT CTAGAGCTAA TACATGCGAA  60
C. parvum  (AF093490) .......... .......... .......... .......... .......... ..........  60

C. hominis (AF222998) AAAACTCGAC TTTATGGAAG GGTTGTATTT ATTAGATAAA GAACCAATAT AATTGGTGAC  120
C. parvum  (AF093490) .......... .......... .......... .......... .......... ..........  120

C. hominis (AF222998) TCATAATAAC TTTACGGATC ACAATTAATG TGACATATCA TTCAAGTTTC TGACCTATCA  180
C. parvum  (AF093490) .......... .......... ...T.A.... .......... .......... ..........  180

C. hominis (AF222998) GCTTTAGACG GTAGGGTATT GGCCTACCGT GGCAATGACG  220
C. parvum  (AF093490) .......... .......... .......... ..........  220

Fig 2–18S rDNA sequence of C. parvum and C. hominis. Location of PCR primers (Cpmw1, Cpmw2) 
and sites of restriction enzymes TaqI and VspI are shown.
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Fig 3–Gel electrophoresis of PCR amplicons 
from 18S rDNA of Cryptosporidium spp. 
Lane 1: 50 bp marker, lane 2, 4: C. parvum 
bovine genotype; lane 3, 5: C. parvum 
human genotype. (A) TaqI digestion, (B) 
VspI digestion.
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Ho-Ping remained intact following 
VspI digestion. From these results, it 
is apparent that Cryptosporidium spp 
in water samples from Lo-Na and 
Ho-Ping belonged to C. parvum, and 
those in samples from Ton-Pu and 
Jen-Ai belonged to C. hominis.

DISCUSSION

Currently, identification of 
Cryptosporidium spp is typically per-
formed by Ziehl-Neelsen acid-tast 
or fluorescent staining of samples 
followed by microscopy (Newman 
et al, 1993; Alves et al, 2000). How-
ever, identification accuracy may be 
affected by the presence of pseudo-
positive substances, interference 
from other spontaneous fluorescent 
materials (Rosenblatt and Sloan, 
1993), or changes in sample preser-
vation methods (eg, cryopreserva-
tion) leading to alterations in oocyst 
appearance (Ward and Wang, 2001). 
Among the various Cryptosporidium 
spp, only C. parvum, C. hominis, C. 
felis, C. canis, C. meleagridis, and 
C. muris have infected humans 
(Xiao et al, 2000; Gatei et al, 2002; 
Dalle et al, 2003). When testing 
environmental samples, micros-
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66 bp and 154 bp (Fig 3A). Additionally, the 
220 bp fragment of C. hominis has a specific 
VspI site that can be digested into 2 frag-
ments of 75 bp and 145 bp (Fig 3B). Restric-
tion enzyme analysis of 220 bp amplicons 
from water samples from all 4 locations 
were digested by TaqI into 66 bp and 154 
bp fragments. Moreover, the 220 bp ampli-
cons from Ton-Pu and Jen-Ai were digested 
by VspI into 2 smaller fragments of 75 bp 
and 145 bp, but some 220 bp amplicons 
remained intact after enzyme treatment. 
The 220 bp amplicons from Lo-Na and 

copy is not suitable for species-specific 
identification. Therefore, because of its 
high specificity and sensitivity, as well 
as the ability to distinguish among spe-
cies, molecular biology methods (such as 
PCR and PCR-RFLP) are being used in 
detection of Cryptosporidium spp (Spano 
et al, 1997). 

Several studies have illustrated that 
PCR amplification of 18S rRNA gene can 
produce C. parvum-specific amplicons 
(Morgan et al, 1997; Patel et al, 1999). 
However, for distinguishing between 
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Cryptosporidium spp using 18S rRNA 
gene as the target, restriction enzymes 
are needed in order to identify the spe-
cific DNA sequences (Xiao et al, 1999; 
Sturbaum et al, 2001). In this study, we 
used newly designed primers to conduct 
the PCR test and found that amplicons of 
220 bp were produced from genomic DNA 
of C. parvum, C. wrairi, and C. meleagridis 
(data not shown). We also used restric-
tion enzyme TaqI to distinguish C. parvum 
from C. meleagridis and C. wrairi, whose 
220 bp amplicon cannot be digested by 
this enzyme. In addition, C. parvum were 
treated with VspI which digests C. parvum 
human genotype (C. hominis) into 2 frag-
ments but not C. parvum bovine genotype. 
Analysis of the PCR amplicons from water 
samples obtained from 4 locations identi-
fied C. parvum rather than C. meleagridis 
or C. wrairi. Furthermore, C. parvum from 
Lo-Na and Ho-Ping were of the C. parvum 
bovine genotype, whereas those from 
Ton-Pu and Jen-Ai samples were mixed 
genotypes, C. hominis and C. parvum bo-
vine genotype. These two areas in Taiwan 
are popular tourist attractions and have 
higher population densities than the other 
two regions. This may be a potential factor 
for the presence of of C. hominis oocysts 
in water samples.

Previous studies investigating Cryp-
tosporidium in Taiwan’s water sources 
have mostly used specific fluorescence 
microscopy (Hsu et al, 1999a,b; Hsu et al, 
2001) and have detected an average of 
22.1 oocysts in 100 liters of water samples. 
The present study confirmed the existence 
of Cryptosporidium spp using single PCR 
assay method. In addition, restriction 
enzyme analysis showed that the water 
samples from the 4 locations contained 
C. parvum (both human and bovine 
genotypes) capable of infecting humans. 
However, the susceptibility of humans 

to Cryptosporidium spp varies greatly 
between individuals, but it has been re-
ported that even a single oocyst can cause 
infection (Wu et al, 2000). Therefore, con-
stant monitoring of Cryptosporidium spp 
may help prevent waterborne outbreaks 
of cryptosporidiosis in Taiwan.
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