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Abstract. A total of 124 V. cholerae non-O1/non-O139 isolates were collected in Khon 
Kaen, Thailand from diarrheal patients, asymptomatic carriers and environmen-
tal water.  The presence of virulence-associated and regulatory genes including 
ctxA, tcpA, zot, ace, ompU, stn, hlyA and toxR) were examined using multiplex 
PCR.  The genomic diversity of the various V. cholerae isolates were differentiated 
using the random amplified polymorphic DNA (RAPD) method.  Antimicrobial 
susceptibility was tested using disk diffusion.  All of V. cholerae non-O1/non-O139 
isolates carried hlyA and toxR and none carried ctxA and tcpA.  The zot, ace and 
both genes together were found in 1.6%, 4.7% and 4.7% of 64 clinical V. cholerae 
non-O1 isolates, respectively, while the environmental ones did not.  The stn gene 
was found in 3.1% (2/64) of the clinical and 3.3% (2/60) of the environmental iso-
lates.  The RAPD patterns were differentiated into 45 types (A to 2S).  RAPD type 
A (32.3%) was the most frequently found in both clinical and environmental V. 
cholerae non-O1 strains (34.4% and 30.0%, respectively); indicating that there was 
a clonal relationship between some clinical and environmental isolates whereas 
almost all of the environmental isolates belonged to different clones.  All strains 
were sensitive to ciprofloxacin and norfloxacin.  The environmental isolates (30%) 
were more resistant than the clinical ones (21.9%).  Resistance to sulfamethoxa-
zole/trimethoprim and tetracycline among the clinical isolates occurred in 9.4% 
(6/64) in 2007, during which period the prevalence of V. cholerae O1 increased.  
We conclude that V. cholerae non-O1/non-O139 from the aquatic environment are 
potentially pathogenic and this same aquatic environment may be a source of 
antimicrobial resistance in V. cholerae.  
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INTRODUCTION

Vibrio cholerae, a gram-negative en-
teric bacterium, is the causative agent of  
cholera (Shears, 2001).  It persists as a pub-
lic health problem in many developing 
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countries including Thailand, especially 
in the northeastern region (Tangkanakul 
and Hanpanjakit, 2007). The V. cholerae 
serogroup O1 and O139 are associated 
with severe diarrhea and can produce 
cholera toxin (CT) encoded by the ctx gene 
(Sharma et al, 1998).  Although cholera 
toxin is the major virulence factor in caus-
ing cholera diarrhea, other factors such 
as toxin coregulated pilus (encoded by 
tcpA), zonula occluden toxin (zot), acces-
sory cholera toxin (ace), outer membrane 
protein (ompU), heat stable enterotoxin 
(sto), hemolysin (hlyA) and ToxR regula-
tory protein (toxR) have been associated 
to pathogenicity (Rivera et al, 2001; Singh 
et al, 2002).

The non-toxigenic (NT) V. cholerae 
non-O1/non-O139 strains can also carry 
other toxin genes besides ctx, including zot, 
ace, stn and hlyA, whose expressions may 
cause cholera, gastroenteritis, septicemia 
and/or extra-intestinal infection (Sharma 
et al, 1998).  A previous study showed that 
a non-O1/non-O139 V. cholerae strain 10259 
belonging to the serogroup O53 harbors 
genes related to the vibrio pathogenicity 
island (VPI) and a cholera toxin (CT) ge-
netic element.  Strain 10259 also contains 
CTX element-associated toxin genes with 
sequences almost identical to those of O1 
strains (Sarkar et al, 2002a).

The pathogenicity of V. cholerae O1 
and O139 strains depend on several viru-
lence factors.  The major ones are present 
in clusters comprising at least three major 
pathogenicity islands (Kaper et al, 1995).  
The first is the CTX genetic element com-
prising the genome of a filamentous bacte-
riophage, CTXf which includes the ctx, zot 
and ace and plays major roles in causing 
diarrhea (Baudry et al, 1992; Trucksis et al, 
1993).  The second is the V. cholerae patho-
genicity island (VPI), which encodes a 
toxin co-regulated type IV pilus (TCP) that 

plays a role in colonization and as a CTXf 
receptor (Karaolis et al, 1998).  The third, 
the RTX toxin gene cluster, encodes a pre-
sumptive cytotoxin, and acyl transferase 
associated with the ATP-binding cassette 
transporter system and causes cell round-
ing and inhibition of actin polymerization 
(Chatterjee et al, 2008). Other virulence  
factors genes have been reported in El 
Tor strains, such as stn (encoding the heat 
stable enterotoxin) (Sarkar et al, 2002b), 
hlyA (hemolysin) (Yamamoto et al, 1984), 
ompU (outer membrane protein)  (Speran-
dio et al, 1996), and toxR (ToxR regulatory 
protein) (Miller et al, 1987). 

The antimicrobial resistance of V. chol-
erae is a major concern, a phenomenon that 
has also been observed in other enteric 
pathogens.  Previous reports have shown 
that multi-drug resistant V. cholerae O1 can 
cause serious outbreaks affecting the treat-
ment of V. cholerae (Chomvarin et al, 2012)

Epidemiological surveillance of chol-
era in most public heath sectors are based 
on phenotypic characteristics, including 
biochemical tests, antigenic properties and 
antibiogram. However, these methods are 
of limited value for predicting the epide-
miological potential of V. cholerae strains 
(Leal et al, 2004) because, even though V. 
cholerae isolates show similar phenotypic 
characteristics, they may differ in their 
genetic profiles indicating that they may 
have been derived from different strains 
or different clones.  Molecular typing tech-
niques, such as random amplified poly-
morphic DNA (RAPD), has been employed 
to study genetic relatedness (Bhowmick 
et al, 2007), and is a promising method for 
distinguishing individual bacterial strains 
and estimating nucleotide sequence diver-
sity (Bhowmick et al, 2007; Leal et al, 2004).  
In addition, RAPD is simple, rapid and 
economical (Van Belum, 1994).

To the best of our knowledge, there 
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has been no simultaneous study of the 
virulence-associated genes, including 
ctxA, tcpA, zot, ace, ompU, hlyA, stn and 
regulatory gene (toxR), for the relationship 
between genomic diversity and antimicro-
bial resistance of clinical and environmen-
tal V. cholerae non-O1/non-O139 strains 
in Thailand. We therefore examined 
whether the strains isolated from clinical 
and environmental sources had the same 
virulence-associated genes, and whether 
they belonged to related clones.  We also 
examined the antimicrobial resistances of 
V. cholerae strains isolated from different 
sources as to whether they had the same 
antimicrobial susceptibility patterns.

MATERIALS AND METHODS

Bacterial strains
A total 124 V. cholerae non-O1/non-

O139 strains were used: these were iso-
lated between 2003 and 2007 in Khon Kaen 
Province of Thailand.  V. cholerae non-O1/
non-O139 strains comprised 64 clinical (61 
patients and 3 asymptomatic subjects) and 
60 environmental (wastewater, river wa-
ter, and water stored in the house of each 
patient) isolates, respectively.  V. cholerae 
strains were presumptively identified us-
ing conventional bacteriological methods 
(Koneman, 1997).  For complete identifica-
tion, bacterial strains were sub-cultured in 
alkaline peptone water for selective en-
richment followed by plating onto TCBS 
agar and subsequent biochemical tests.  

The identification of the specific V. 
cholerae serogroup was determined by slide 
agglutination with polyvalent V. cholerae 
O1 and O139 antiserum (Oxoid, Unipath, 
Basingstroke, Hamshire, England).  
Antibiotic susceptibility test

Antimicrobial activity of the V. chol-
erae strains was determined using the disk 
diffusion method (National Committee 

for Clinical Laboratory Standards, 2002) 
with commercially available disks (Oxoid, 
Unipath, Basingstroke, Hamshire, Eng-
land).  All of the V. cholerae isolates were 
examined for susceptibility to ampicillin 
(AMP, 10 µg), chloramphenicol (C, 30 µg), 
ciprofloxacin (CIP, 5 µg), sulfamethoxa-
zole/trimethoprim (SXT, 23.75/1.25 µg), 
erythromycin (E, 15 µg), norfloxacin 
(NOR, 10 µg) and tetracycline (TER, 30 
µg).  E. coli ATCC 25922 was used as the 
control strain.  For each antimicrobial 
agent, the zones were described as re-
sistant (R), intermediate resistant (I) or 
susceptible (S).  
DNA extraction

DNA was extracted using a genomic 
DNA purification kit (Puregene DNA 
purification system; Gentra System, Min-
neapolis, MN) according to the manufac-
turer’s instructions.  In brief, cells of V. 
cholerae from blood agar plates were lysed 
for DNA extraction and stored at -20 ºC 
until used (Chomvarin et al, 2012).

Multiplex PCR assay
Specific primers designed for three 

sets of multiplex PCR analysis for ctxA, 
tcpA, zot, ace, ompU, stn, hlyA and toxR 
were employed as previously reported 
(Chomvarin et al, 2012).  The primers 
and thermocycling conditions used in 
this study are listed in Table 1.  PCR was 
conducted using  a 50-µl reaction mixture 
containing 100-200 ng of target DNA, 
200 µM of each dNTPs (Gibco-BRL; Life 
Technologies, Gaithersburg, MD), 0.75-
1.5 mM MgCl2, 20 mM Tris-HCl (pH 8.4), 
50 mM KCl, 100-300 nM each primer 
and 1.25 U Taq polymerase (Gibco-BRL) 
in a thermocycler (Perkin-Elmer, Gene-
Amp, PCR 2400; Branchburg, NJ). The 
amplicons were subjected to 2% agarose 
gel-electrophoresis and visualized under 
UV light (Imagemaster VDS; Pharmacia 
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Table 1
Primers, amplicon sizes and PCR thermocycling conditions used for detection of 

virulence-associated genes and RAPD-PCR typing of V. cholerae non-O1/O139 strains.

Gene and size 	 Primer sequence	 Thermocycling	 Reference
of amplicon (bp)		  conditions	

ctxA, 302	 F-5’ CTCAGACGGGATTTGTTAGGGACG 3’	 Multiplex PCR: 	 (Kapley and 
	 R-5’ TCTATGTCTGTAGCCATT 3’	 95°C, 30 sec;  60°C,	 Purohit, 2001);
		  1 min; 72°C, 1 min	 (Rivera et al, 2001).
		  (25 cycles)	
tcpA, 472	 F-5’ GAAGAAGTTTGTAAAAGAAGAACAC 3’		
	 R-5’ GAAAGCACCTTCTTTCAGGTTG 3’ 		
zot, 947	 F-5’ TCGCTTAACGATGGCGCGTTTT 3’		
	 R-5’ AACCCCGTTTCACTTCTACCCA 3’		
ace, 600	 F-5’ AGAGCGCTGCATTTATCCTTATTG 3’	 Multiplex PCR:	 (Leal et al, 2004);
	 R-5’ AACTCGGTCTCGGCCTCTCGTATC 3’
toxR, 779	 F-5’ CCTTCGATCCCCTAAGCAATAC 3’	 95°C, 30 sec; 60°C,	 (Singh et al, 2002)
	 R-5’ AGGGTTAGCAACGATGCGTAAG 3’	 1 min; 72°C, 1 min
		  (25 cycles)		
ompU, 869	 F-5’ ACGCTGACGGAATCAACCAAAG 3’		
	 R-5’ GCGGAAGTTTGGCTTGAAGTAG 3’		
stn, 140	 F-5’ AAAACAGTGCAGCAACCACAAC 3’	 Duplex PCR: 	 (Rivera et al, 2001);
	 R-5’ GCTGGATTGCAACATATTTCGC 3’	 95°C, 30 sec; 55°C, 	 (Singh et al, 2002)
		  1 min; 72°C, 1 
		  min (25 cycles)
hlyA, 540	 F-5’ CTTAGCTGAGCTGCGCGATTTG 3’
	 R-5’ GAGTTGATCATTCAGA 3’	
RAPD primer	 5’ GTTTCGCTCC 3’	 94°C, 4 min (1 cycle); 	(Kondo et al, 2001)
		  94°C, 1 min; 36°C, 
		  1 min; 72°C, 2 min 
		  (45 cycles)
		  72°C, 7 min (1 cycle)	

			 

Biotech, Piscataway, NJ) after ethidium 
bromide staining. 
RAPD typing

The oligonucleotide primers and 
thermocycling conditions used for the 
RAPD protocol are shown in Table 1.  PCR 
was conducted in a 50-µl reaction mixture 
containing 100 ng of target DNA, 250 mM 
dNTPs, 2 mM MgCl2, 20 mM Tris-HCl (pH 
8.4), 50 mM KCl, 1 µM primer and 1.25 U 
Taq polymerase. The amplified product (10 
µl) was electrophoresed in 1.5% NuSieve® 

agarose gel with 0.5X TAE for 35 minutes 
at 100 V.  Gels containing amplified DNA 
were stained with ethidium bromide and 
visualized under a UV transilluminator 
as described above.  
Analysis of RAPD data

The RAPD types were examined based 
on the presence or absence of bands.  The 
similarities between fingerprints were 
determined by construction of a similar-
ity matrix using Restdist program, which 
generated a dendogram using UPGMA 
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Table 2
Distribution of virulence-associated genes in 124 V. cholerae non-O1/non-O139 strains.

Strain	 Source	  			          Gene					     Total no. of 
										          isolates 
		  ctxA	 tcpA	 zot	 ace	 toxR	 ompU	 stn	 hlyA	 (%)

Clinical	 Patients	 -	 -	 -	 -	 +	 -	 -	 +	 47 	(73)	
V. cholerae 		  -	 -	 -	 -	 +	 +	 -	 +	 5 	(8)	
non-O1		  -	 -	 -	 -	 +	 -	 +	 +	  2 	(3)	
(n = 64)		  -	 -	 -	 +	 +	 -	 -	 +	 3 	(5)	
		  -	 -	 +	 +	 +	 -	 -	 +	 1 	(2)	
		  -	 -	 +	 +	 +	 +	 -	 +	 2 	(3)	
		  -	 -	 +	 -	 +	 -	 -	 +	 1 	(2)	
	 Carriers	 -	 -	 -	 -	 +	 -	 -	 +	 3 	(5)
Environmental	 Water from 	 -	 -	 -	 -	 +	 -	 -	 +	 6 	(10)
V. cholerae	 V. cholerae O1 
non-O1	 patient’s house		
(n = 60)	 Aquatic	 -	 -	 -	 -	 +	 +	 -	 +	 23 	(38)	
	 environment	 -	 -	 -	 -	 +	 -	 -	 +	 29 	(48)	
		  -	 -	 -	 -	 +	 -	 +	 +	 2 	(3)

+, present; -, absent.										        
		

clustering algorithm (3.67 version) (Philip 
package, University of Washington, Se-
attle, WA).
Latex agglutination assay for cholera toxin 
production

Detection of cholera toxin was per-
formed using the latex agglutination assay 
according to manufacturer’s instructions 
(Oxoid, Columbia, MD).  Each overnight 
culture of V. cholerae was centrifuged and 
a 25-µl aliquot of supernatant mixed with 
a 25-µl aliquot of latex suspension in a V-
well microtiter plate.  If toxin is present, 
agglutination results in the formation of 
a lattice structure (Chomvarin et al, 2012).

RESULTS

Prevalence of virulence and regularity 
genes in V. cholerae non-O1/non-O139 iso-
lates

We examined 124 V. cholerae non-O1/

non-O139 isolates, 64 from clinical source 
(61 patients and 3 asymptomatic subjects) 
and 60 from environmental source (54 
wastewater and river water, and 6 water 
stored in the house of each patient) for 
the presence of ctxA, tcpA, zot, ace, hlyA, 
ompU, stn and toxR.  The toxR and hlyA 
were detected in all of the V. cholerae non-
O1/non-O139 isolates, whereas ctxA and 
tcpA were not detected (Table 2).  

The occurrence of the heteromorphic 
genotypes present in either clinical or 
environmental V. cholerae  non-O1 non-
O139 isolates are shown in Table 2.  Di-
morphic genotype toxR and hlyA was the 
most frequently found in clinical (73%) 
and environmental (58%) isolates. Detec-
tion rate of trimorphic genotype toxR, 
hlyA, and ace was 5%, the tetramorphic 
genotype toxR, hlyA, zot, and ace, 2% and 
the  pentamorphic genotype toxR, hlyA, 
zot, ace, and ompU, 3%. The trimorphic 
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genotype toxR, hlyA, and zot was present 
only in clinical isolates, whereas all these 
genotypes were not detected in all the 
environmental isolates tested in this study.
RAPD fingerprinting analysis

RAPD yielded 45 distinguishable 
banding patterns (identified by the let-
ter ‘A’ to ‘2S’, sequentially) (Fig 1).  The 
discriminatory power (D-value) of the 
RAPD fingerprinting assay of V. cholerae 
non-O1/non-O139 strains in the study 
population was 0.995. RAPD pattern ‘A’ 
was the most frequently found (40/124, 
32%) of the V. cholerae non-O1 strains, of 
which 34% and 30% were in clinical and 
environmental strains, respectively.  The 
second most predominant RAPD pattern 
was ‘W’, which included 9 clinical and 
4 environmental isolates.  There was no 
association between RAPD patterns and 
time or source of collection.  Other pat-
terns were scattered among small groups 
and individual strains.  V. cholerae non-O1/
non-O139 strains were very diverse in 
both their banding patterns and source 
(patient and environment) (Fig 1).    

Antimicrobial susceptibility
Twelve antimicrobial susceptibility 

(AS) types were found when the 124 V. 
cholerae non-O1/non-O139 strains were 
tested against 7 antimicrobial agents.  
These strains were resistant to TE (5%), 
SXT (9%), AMP (15%), and E (2%), but 
were sensitive to CIP and NOR (Table 
3). The environmental isolates showed 
higher multi-drug resistance than the 
clinical isolates (Table 4). The AS type 
most frequently found was type 4 (AMPS 

CSCIPSEISXTSNORSTE S) (61%) (Table 5).  
Multi-drug resistance to SXT and TE were 
higher in strains isolated in 2007.

DISCUSSION

Between 2003-2007, we collected 
V. cholerae non-O1/non-O139 isolates in 
Khon Kaen, Thailand; from diarrheal 
patients and asymptomatic healthy in-
dividuals, natural aquatic environments 
and household water from the houses 
of patients with diarrhea.  At least three 
localized outbreaks of diarrhea caused by 
non-O1/non-O139 serogroups have been 

Fig  1–RAPD patterns of clinical and environmental V. cholerae non-O1/non-O139 strains. Primer used 
was 5’ GTTTCGCTCC 3’ and amplification was conducted for 1 cycle at 72°C for 7 minutes. 
Amplicons were analyzed by 1.5% NuSieve® agarose gel-electrophoresis. RAPD patterns (A 
to 2S) are indicated on top of each lane; M, molecular size markers.
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Table 3
Antimicrobial susceptibility of 124 V. cholerae non-O1/non-O139 strains from clinical 

and environmental sources.

Antimicrobial agent		 Number of V. cholerae non-O1/non-O139 strains (%) 

	 R	 I	 S

Ampicillin (AMP)	 19 	(15)	 7 	(6)	 96 	(77)
Chloramphenicol (C)	 1 	(1)	 2 	(2)	 121 	(98)
Co-trimoxazole (SXT)	 11 	(9)	 0 	(0)	 113 	(91)
Ciprofoxacin (CIP)	 0 	(0)	 0 	(0)	 124 	(100)
Erythromycin (E)	 3 	(2)	 112 	(90)	 9 	(7)
Norfloxacin (NOR)	 0 	(0)	 0 	(0)	 124 	(100)
Tetracycline (TER)	 6 	(5)	 3 	(2)	 115	 (94)

R, resistant; I, intermediate resistant; S, susceptible.			 

Table 4
Combination of antimicrobial resistance in V. cholerae non-O1/non-O139 isolates from 

clinical and environmental sources.

No. of combinations of
		 Number of V. cholerae non-O1/non-O139 strains (%) 

antimicrobial resistance	 Patient (n = 64) 	 Environment (n = 60) 	 Total isolates (n = 124) 
		  No. (%)	 No. (%)	 No. (%)

0	 50 	(78)	 42 	(70)	 92 	(74)
1	 7 	(11)	 17 	(28)	 24 	(19)
2	 7 	(11)	 1	  (2)	 8 	(7)
3	 0		  0			   0
Total 	 14 	(22)	 18 	(30)	 32 	(26)		
	

identified; including V. cholerae O10 and 
O12 in Lima, Peru (Dalsgaard et al, 1995), 
O10 in East Delhi, India (Rudra et al, 1996), 
and O10 in Khmer refugee camps in Thai-
land (Bagchi et al, 1993).  Although most of 
our clinical and environmental V. cholerae 
non-O1/non-O139 strains did not carry 
ctx and tcpA, some carried zot, ace, ompU 
and stn/sto and all carried hlyA and toxR, 
in agreement with other reports (Brown 
and Manning, 1985; Sharma et al, 1998).  
hlyA expresses is a pore-forming exotoxin 
that contributes to cytotoxic activity and 

triggers apoptotic cell death (Saka et al, 
2008). V. cholerae non-O1 may also pro-
duce several extracellular products; such 
as hemolysin, NAG-ST, Shiga-like toxin 
and hemagglutinin, which play roles in 
pathogenesis (O’Brien et al, 1984; Bagchi 
et al, 1993).  In the current study, stn was 
present in 4 (3%) of the non-O1/non-O139 
isolates; therefore, V. cholerae non-O1/
O139 poses a public health threat as it can 
cause diarrheal disease (Singh et al, 2002).

ompU encodes the outer membrane 
protein OmpU, an aquaporin that allows  
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Table 5
Antimicrobial susceptibility (AS) types of 124 clinical and environmental V. cholerae 

non-O1/non-O139 strains.

AS				    Antibiotic				    Number of strains	 Total
type										          number of 
	 AMP	 C	 CIP	 E	 SXT	 NOR	 TER	 Patient 	 Environment	 strains
								        (n = 64)	 (n = 60)	 (%)

1	 S	 S	 S	 S	 S	 S	 S	 5	 5	 10 	(8.1)
2	 S	 S	 S	 R	 S	 S	 S	 0	 1	 1 	(0.8)
3	 R	 S	 S	 R	 S	 S	 S	 1	 1	 2 	(1.6)
4	 S	 S	 S	 I	 S	 S	 S	 45	 31	 76 	(61.3)
5	 R	 S	 S	 I	 S	 S	 S	 5	 12	 17 	(13.7)
6	 I	 S	 S	 I	 S	 S	 S	 0	 5	 5 	(4.0)
7	 S	 S	 S	 I	 R	 S	 S	 0	 1	 1 	(0.8)
8	 S	 I	 S	 I	 R	 S	 S	 1	 0	 1 	(0.8)
9	 I	 I	 S	 I	 R	 S	 S	 0	 2	 2 	(1.6)
10	 I	 S	 S	 S	 S	 S	 I	 0	 1	 1 	(0.8)
11	 S	 S	 S	 I	 R	 S	 I	 1	 1	 2 	(1.6)
12	 S	 S	 S	 I	 R	 S	 R	 6*	 0	 6 	(4.8)

R, resistant; I, intermediate resistant; S, susceptible. AMP, ampicillin, C, chloramphenicol, CIP, 
ciprofloxacin, E, erythromycin, SXT, co-trimoxazole, NOR, norfloxacin, TER, tetracycline, *In 2007.

entry and exit of hydrophilic low-mole- 
cular mass molecules (Aeckersberg et al, 
2001).  OmpU is regulated by ToxR and 
influences intestinal colonization and 
resistance to bile acids (Provenzano et al, 
2001).  In this investigation, ompU was 
detected in 24% of the isolates, 75% of 
which surprisingly were isolated from 
environmental source.  

Our study used RAPD fingerprinting 
for molecular typing because it is simple, 
sensitive and of low cost (Williams et al,  
1990).  This method has been used in 
genetic diversity analysis of different 
bacterial species, including V.  cholerae 
(Makino et al, 1995; Radu et al, 1999).  We 
found that RAPD type ‘A’ was the most 
prevalent among these isolates. None-
theless, there was no specific association 
between the isolation sources (clinical 
and environmental) and collection times 

with the RAPD patterns.  Our findings 
suggest that V. cholerae non-O1/non-O139 
strains are genetically heterogeneous, as 
observed by other researchers (Rivera  
et al, 2001; Vital Brazil et al, 2002). 

Interestingly, the intermediate resis-
tant and multi-drug resistant V. cholerae 
non-O1/non-O139 strains isolated from 
the environmental and clinical sources 
were also found in the same period and 
some environmental isolates had higher 
antibiotic resistance than in the clinical 
isolates, indicating that the natural en-
vironment may serve as a reservoir of 
multi-drug resistance genes (Kruse and 
Sorum, 1994).  It is well known that the 
conjugation and transfer of resistance 
plasmids (R plasmids) is a phenomenon 
that occurs in the environment and can 
occur between bacterial strains common 
to humans, animals and fish origins, unre-
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