RESEARCH NOTE

EFFECT OF PRAZIQUANTEL TREATMENT ON HEPATIC EGG GRANULOMAS IN MICE INFECTED WITH PRAZIQUANTEL-SUSCEPTIBLE AND -RESISTANT SCHISTOSOMA JAPONICUM ISOLATES

Ke Qian^{1,2,3,4,5}, Yousheng Liang^{1,2,3,4}, Wei Wang^{1,2,3,4,6}, Guoli Qu^{1,2,3,4}, Hongjun Li^{1,2,3,4}, Zhenkun Yang^{1,2,3,4}, Zhengyang Zhao^{1,2,3,4}, Yuntian Xing^{1,2,3,4} and Jianrong Dai^{1,2,3,4}

¹Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Province; ²Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology; ³Jiangsu Institute of Parasitic Diseases; ⁴Public Health Research Center, Jiangnan University, Wuxi, Jiangsu Province; ⁵Nanchang Municipal Center for Disease Control and Prevention, Nanchang, Jiangxi Province; ⁶School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China

Abstract. Currently, praziguantel is the drug of choice for treatment of human Schistosoma japonicum infections in China. Although no evidence of resistance to praziguantel has been detected following repeated and extensive chemotherapy with praziguantel for more than 30 years in endemic foci of the country, there were several patients with *S. japonicum* infection who failed in standard praziguantel treatment, and praziguantel-resistant isolates of *S. japonicum* have been successfully generated in a mouse model. This study assessed the effect of praziguantel treatment on pathological damages to mice infected with praziquantel-susceptible and -resistant S. japonicum isolates. Mice were each infected percutaneously with 20 cercariae of praziquantel-resistant and -susceptible S. japonicum isolates, and then randomly grouped. Mice in the treatment groups were administered a single dose (150 kg/mg) of praziquantel at day 35 post-infection, while infected but untreated mice served as controls. Mice were sacrificed on day 42 or 49 postinfection, the area and circumference of the hepatic egg granulomas in fresh liver specimens were measured. In infected but untreated mice, there were no significant differences in the area and circumference of the hepatic egg granulomas between praziquantel-resistant and -susceptible isolates, whereas in praziquantel-treated mice, the area or circumference of hepatic egg granulomas were significantly greater in mice infected with the praziguantel-resistant than in those harboring

Tel/Fax: +86 510 68781022. E-mail: wxliangyousheng@163.com

Correspondence: Wei Wang, Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province, 214064, China. E-mail: wangwei@jipd.com

Yousheng Liang, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province, 214064, China.

praziquantel-susceptible isolates (p<0.01). These results demonstrate praziquantel treatment causes more reductions in the size of hepatic egg granulomas in mice infected with praziquantel-susceptible *S. japonicum* isolates than in those infected with drug-resistant parasites, indicating eggs from praziquantel-susceptible isolates are more sensitive to praziquantel than those from the drug resistant isolates.

Keywords: *Schistosoma japonicum,* drug resistance, hepatic egg granuloma, praziquantel

INTRODUCTION

Schistosomiasis, caused by infection with blood flukes of the genus Schistosoma, remains a global public health concern (Colley et al, 2014). This neglected tropical disease is reported to be endemic in 78 countries and more than 200 million people are estimated to have the disease across the world, with a further 800 million at risk of infection (Qu et al, 2016). Currently, mass drug administration (MDA) with praziguantel is implemented as the major global strategy for schistosomiasis control (Ross et al, 2015). However, there is a growing concern on the emergence of praziquantel-resistant parasites (Wang et al, 2012b), following long-term and extensive use of the agent since its introduction in late 1970s (Gönnert and Andrews, 1977). In Africa, there are increasing evidences demonstrating praziquantel-resistant S. mansoni has already exists in endemic foci (Doenhoff et al, 2002; Melman et al, 2009; Bergquist *et al*, 2017; Vale *et al*, 2017).

Since the 1980s, praziquantel has replaced other schistosomicides to become the drug of choice for the treatment of human *S. japonicum* infections in China (Chen, 2005; Xiao *et al*, 2010). Following repeated and extensive chemotherapy with praziquantel for more than 30 years in ten endemic foci of the country, there is still no evidence of resistance to praziquantel; however, there are several patients with *S. japonicum* infection who fail in standard praziquantel treatment at a single oral

dose of 40 mg/kg or at a single dose of 30 mg/kg administered for two successive days (Liang *et al*, 2001a; Wang *et al*, 2010, 2012a; Seto *et al*, 2011). In addition, praziquantel resistance was experimentally induced in *S. japonicum* in a mouse model, demonstrating that the parasites are capable of developing resistance to praziquantel when sufficiently given under drug pressure (Liang *et al*, 2011).

Previous studies detected higher in vitro response to praziguantel at the egg, miracidial, cercarial and adult stages of praziguantel-susceptible S. mansoni isolates than drug-resistant isolates (Liang et al, 2001b). In addition, mice infected with praziguantel-resistant S. mansoni isolates shed more eggs in their feces than mice carrying drug-susceptible parasites, and the praziquantel-resistant isolates appear more pathogenic in mice than susceptible parasites (Liang et al, 2001c). Similarly, there is a clear cut reduction in the responses to praziquantel at the miracidial, cercarial and adult stages of praziquantel-resistant S. japonicum isolates than praziquantel-susceptible parasites (Li et al, 2011). However, the pathological damages of praziguantelresistant S. japonicum to mammalian hosts remain unknown.

Hence, the present study was designed to assess the effect of praziquantel treatment on hepatic egg granulomas in mice infected with praziquantel-susceptible and -resistant *S. japonicum* isolates and, thereby, obtain information of the

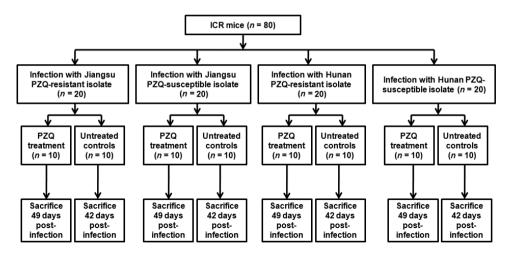


Fig 1–Diagram of study protocol. Praziquantel (PZQ) treatment was a single dose of 150 mg/kg by oral gavage at day 35 post-infection.

pathogenicity of praziquantel- resistant *S. japonicum* isolates in mice.

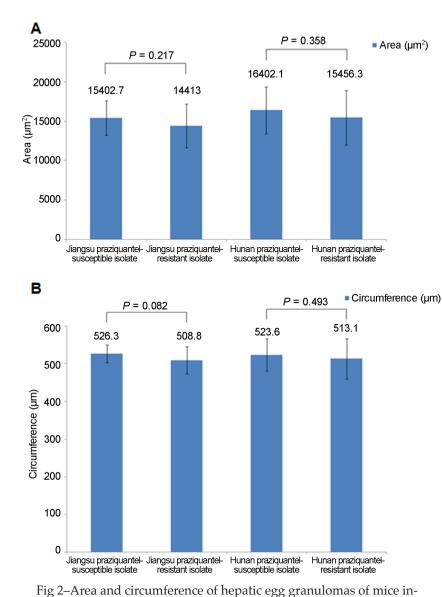
MATERIALS AND METHODS

Chemicals

Praziquantel (batch number: 0001449213) and 2.5% Cremophor number: BCBB1383) were from Sigma-Aldrich (Sigma-Aldrich Chemie, Munich, Germany). Praziquantel was ground in an ND-2L ball miller (Nanda Tianzu Electronics, Nanjing, China) with 2.5% Cremophor EL to produce a 12 g/l praziquantel suspension.

Parasites

Four *S. japonicum* isolates were employed, namely, Jiangsu isolate of the 12th praziquantel-selection passage (praziquantel $ED_{50} = 565.5 \text{ mg/kg}$), the 11th passage of a Hunan isolate selected for praziquantel resistance (praziquantel $ED_{50} = 467.2 \text{ mg/kg}$), non-drug treated Jiangsu isolate (praziquantel $ED_{50} = 147.7 \text{ mg/kg}$), and non-drug treated Hunan isolate (praziquantel $ED_{50} = 151.8 \text{ mg/kg}$) (Wang *et al*, 2014a,b). The four *S. japonicum* isolates were maintained at the Key Laboratory of the National Health and Family Planning


Commission on Parasitic Disease Control and Prevention, Wuxi, China.

Animals

Eighty female six-week-old mice, ICR strain, each weighing 20 g, from the Center for Comparative Medicine, Yangzhou University, Yangzhou were housed at the Laboratory Animal Center at Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Wuxi and given free access to food and water.

Infection and treatment protocol

Each mouse was infected percutaneously with 20 cercariae of praziquantelresistant or -susceptible *S. japonicum* isolates via the shaved abdominal skin, and 20 mice with the same parasite infection were grouped together. Mice in the treatment groups were given a single dose of 150 mg/kg praziquantel suspension by oral gavage at day 35 post-infection, while infected but untreated mice served as controls. Animals in the treatment groups were sacrificed at day 49 post-infection, while untreated mice were sacrificed at day 42 post-infection (Fig 1).

fected with praziquantel-susceptible and -resistant Schistosoma

japonicum isolates. The experimental protocol is shown in Fig 1.

A. Area of hepatic egg granulomas. B. Circumference of hepatic

Measurement of hepatic egg granulomas

After mice were sacrificed, fresh liver specimens were immediately fixed in absolute ethvl alcohol for 24 hours. Then, the liver specimens were fixed in a series of methanol (90%, 80%) and 70%) for 24 hours. embedded in paraffin, sliced into 7 um sections using an AO 860 sliding microtome (American Optics, Ontario, Canada), and stained with hematoxvlin-eosin (HE). The area and circumference of the granuloma surrounding a single, mature egg were measured in the mouse liver using a BA310 biological light microscope (Motic Electric Group, Xiamen, China), and 20 hepatic egg granulomas were measured for each parasite isolate.

Data analysis

Data were analyzed using a Microsoft Excel version 2010

The study was approved by the Ethical Review Committee of Jiangsu Institute of Parasitic Diseases (permission number: IRB00003927). All animal experimentations were performed following the Guidelines for the Care and Use of Laboratory Animals (Jones-Bolin, 2012).

egg granulomas. Bar is mean \pm SD. *P*, *p*-value.

(Microsoft, Redmond, WA) and a statistical software SPSS version 17.0 (IBM, Armonk, NY). Data are expressed as mean \pm SD and difference of means between groups was tested for statistical significance with Student's *t*-test. A *p*-value <0.05 is considered statistically significant.

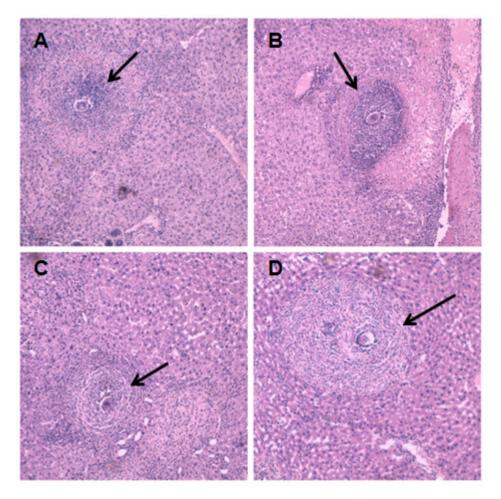


Fig 3–Hematoxylin-eosin stained livers of mice infected with praziquantel-susceptible and -resistant isolates of *Schistosoma japonicum*. The experimental protocol is shown in Fig 1. A. Female ICR mouse infected with praziquantel-susceptible *S. japonicum* isolate. B. Female ICR mouse infected with praziquantel-resistant *S. japonicum* isolate. C. Female ICR mouse infected with praziquantel-susceptible *S. japonicum* isolate following praziquantel treatment. D. Female ICR mouse infected with praziquantel-resistant *S. japonicum* isolate following praziquantel treatment. Arrow indicates hepatic egg granuloma. Light microscope magnification, 100x.

RESULTS

In infected but untreated mice, there are no significant differences between praziquantel-resistant and -susceptible isolates in the area and circumference of hepatic egg granulomas (Figs 2 and 3). In mice administered a single dose of 150 mg/ kg praziquantel at day 35 post-infection, the area and circumference of the hepatic egg granulomas are statistically larger in mice infected with praziquantel-resistant *S. japonicum* isolates than in those harboring drug-susceptible parasites (p < 0.01) (Figs 3 and 4).

DISCUSSION

Elucidation of the biological characteristics of praziquantel-resistant *Schisto*-

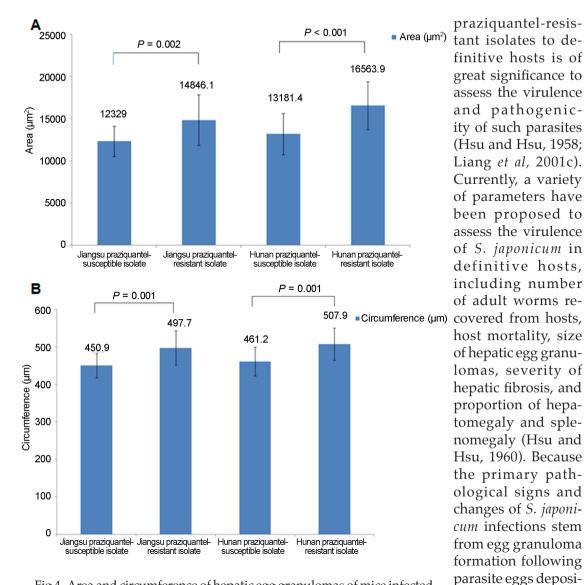


Fig 4–Area and circumference of hepatic egg granulomas of mice infected with praziquantel-susceptible and -resistant *Schistosoma japonicum* isolates following praziquantel treatment. The experimental protocol is shown in Fig 1. A. Area of hepatic egg granulomas. B. Circumference of hepatic egg granulomas. Bar is mean ± SD. *P*, *p*-value.

soma species, such as parasite infectivity to definitive hosts, cercarial production and pre-patent period of the parasite may facilitate understanding of the transmission dynamics of drug-resistant parasites, while investigating the egg production and pathological damages caused by granulomatous inflammation have been widely used to evaluate the virulence and pathogenicity of *S. japonicum* (Warren *et al*, 1978; Cheever, 1985; Doenhoff, 1997; Huang *et al*, 2011).

tion in liver (Warren

et al, 1975), the size

of egg granulomas

and the severity of

In this study, a mouse model designed to have the same intensity and duration

of *S. japonicum* infection as in the natural state was employed. Our findings are in agreement with a previous report performed with *S. mansoni* (Liang *et al*, 2002). The present study detected a lower *in vivo* response to praziquantel in eggs of praziquantel-resistant *S. japonicum* isolates relative to drug-susceptible parasites is consistent with a previous *in vitro* assay showing lower responses to praziquantel-resistant compared to -susceptible *S. japonicum* isolates (Li *et al*, 2011).

Praziguantel treatment is effective in causing a clear-cut and rapid reduction in the size of hepatic egg granulomas of mice harboring *Schistosoma* species (Mehlhorn et al, 1981, 1982; Huang et al, 2011). Praziguantel ability to ameliorate the pathological damages is considered to be closely associated with its activity against the parasite eggs deposited in the host liver (Huang et al, 2011). As eggs have been identified to play a critical role during the pathogenic process of Schistosoma-induced diseases (Wilson et al, 2007), a reduction in parasite egg production and alleviation of egg-induced pathological damage are therefore of great importance in improving the prognosis of schistosomiasis even if infection cannot be completely suppressed (Gray *et al*, 2011). Because eggs of praziquantel-resistant S. japonicum isolates exhibited a lower response to praziquantel than the susceptible isolates, praziquantel treatment may fail to decrease egg-induced pathological damage. The underlying mechanisms responsible for the parasite-host interactions, host immune responses, and immunomodulation during egg granuloma need further investigations, which should facilitate the elucidation of our understanding of the immune mechanisms in

schistosomiasis, and thereby allow exploration of the mechanism(s) of praziquantel resistance in schistosomiasis.

ACKNOWLEDGEMENTS

The study was supported by grants from the National Science and Technology Pillar Program of China (grant no. 2009BAI78B06), the National Natural Science Foundation of China (grant no. 30471516), the Natural Science Foundation of Jiangsu Province (grant nos. BK2004024 and BK20141105), the Jiangsu Provincial Project of Invigorating Health Care through Science, Technology and Education, Jiangsu Provincial Medical Youth Talent, Project of Invigorating Health Care through Science, Technology and Education (grant no. QNRC2016621), the Key Science Research Project of Wuxi Municipal Bureau of Health (grant no. Z201507), and the Wuxi Municipal Health and Family Planning Commission (grant no. T201623).

REFERENCES

- Bergquist R, Utzinger J, Keiser J. Controlling schistosomiasis with praziquantel: how much longer without a viable alternative? *Infect Dis Poverty* 2017; 6: 74.
- Cheever AW. *Schistosoma japonicum*: the pathology of experimental infection. *Exp Parasitol* 1985; 59: 1-11.
- Chen MG. Use of praziquantel for clinical treatment and morbidity control of schistosomiasis japonica in China: a review of 30 years' experience. *Acta Trop* 2005; 96: 168-76.
- Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. *Lancet* 2014; 383: 2253-64.
- Doenhoff MJ. A role for granulomatous inflammation in the transmission of infectious disease: schistosomiasis and tuberculosis.

Parasitology 1997; 115: S113-25.

- Doenhoff MJ, Kusel JR, Coles GC, Cioli D. Resistance of *Schistosoma mansoni* to praziquantel: is there a problem? *Trans R Soc Trop Med Hyg* 2002; 96: 465-9.
- Gönnert R, Andrews P. Praziquantel, a new board-spectrum antischistosomal agent. *Z Parasitenkd* 1977; 52: 129-50.
- Gray DJ, Ross AG, Li YS, McManus DP. Diagnosis and management of schistosomiasis. *BMJ* 2011; 342: d2651.
- Hsu HF, Hsu SYL. The prepatent period of four geographic strains of *Schistosoma japonicum*. Trans R Soc Trop Med Hyg 1958; 52: 363-7.
- Hsu SY, Hus HF. On the virulence of the geographic strains of *Schistosoma japonicum*. *Am J Trop Med Hyg* 1960; 9: 195-8.
- Huang YX, Xu YL, Yu CX, *et al*. Effect of praziquantel prolonged administration on granuloma formation around *Schistosoma japonicum* eggs in lung of sensitized mice. *Parasitol Res* 2011; 109: 1453-9.
- Jones-Bolin S. Guidelines for the care and use of laboratory animals in biomedical research. *Curr Protoc Pharmacol* 2012; 59: A.4B.1-A.4B.9.
- Li HJ, Liang YS, Dai JR, *et al.* Studies on resistance of *Schistosoma* to praziquantel XIV experimental comparison of susceptibility to praziquantel between PZQ-resistant isolates and PZQ-susceptible isolates of *Schistosoma japonicum* in stages of adult worms, miracidia and cercariae. *Chin J Schisto Control* 2011; 23: 611-9.
- Liang YS, Dai JR, Ning A, *et al.* Susceptibility of *Schistosoma japonicum* to praziquantel in China. *Trop Med Int Health* 2001a; 6: 707-4.
- Liang YS, Coles GC, Doenhoff MJ, Southgate VR. *In vitro* responses of praziquantelresistant and -susceptible *Schistosoma mansoni* to praziquantel. *Int J Parasitol* 2001b; 31: 1227-35.
- Liang YS, Coles GC, Dai JR, Zhu YC, Doenhoff MJ. Biological characteristics of praziquantel-resistant and -susceptible isolates of

Schistosoma mansoni. Ann Trop Med Parasitol 2001c; 95: 715-23.

- Liang YS, Coles GC, Dai JR, Zhu YC, Doenhoff MJ. Adult worm tegumental damage and egg-granulomas in praziquantel-resistant and -susceptible *Schistosoma mansoni* treated *in vivo*. *J Helminthol* 2002; 76: 327-33.
- Liang YS, Li HJ, Dai JR, *et al.* Studies on resistance of *Schistosoma* to praziquantel. XIII Resistance of *Schistosoma japonicum* to praziquantel is experimentally induced in laboratory. *Chin J Schisto Control* 2011; 23: 605-10.
- Mehlhorn H, Becker B, Andrews P, Thomas H, Frenkel JK. *In vivo* and *in vitro* experiments on the effects of praziquantel on *Schistosoma mansoni*. A light and electron microscopic study. *Arzneimittelforschung* 1981; 31: 544-54.
- Mehlhorn H, Frenkel JK, Andrews P, Thomas H. Light and electron microscopic studies on *Schistosoma mansoni* granulomas of mouse livers following treatment with praziquantel. *Tropenmed Parasitol* 1982; 33: 229-39.
- Melman SD, Steinauer ML, Cunningham C, et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of *Schistosoma mansoni*. PLOS Negl Trop Dis 2009; 3: e504.
- Qu G, Wang W, Lu X, Dai J, Li X, Liang Y. Evaluating the risk of *Schistosoma mansoni* transmission in mainland China. *Parasitol Res* 2016; 115: 4711-3.
- Ross AG, Olveda RM, Li Y. An audacious goal: the elimination of schistosomiasis in our lifetime through mass drug administration. *Lancet* 2015; 385: 2220-1.
- Seto EY, Wong BK, Lu D, Zhong B. Human schistosomiasis resistance to praziquantel in China: should we be worried? *Am J Trop Med Hyg* 2011; 85: 74-82.
- Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gärtner F, Correia da Costa JM. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. *Antimicrob Agents Chemother*

2017; 61: e02582-16.

- Wang W, Dai JR, Li HJ, Shen XH, Liang YS. Is there reduced susceptibility to praziquantel in *Schistosoma japonicum*? Evidence from China. *Parasitology* 2010; 137: 1905-12.
- Wang W, Dai JR, Li HJ, Shen XH, Liang YS. The sensitivity of *Schistosoma japonicum* to praziquantel: a field evaluation in areas with low endemicity of China. *Am J Trop Med Hyg* 2012a; 86: 834-6.
- Wang W, Wang L, Liang YS. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. *Parasitol Res* 2012b; 111: 1871-7.
- Wang W, Li TY, Ji Y, *et al.* Efficacy of artemether and artesunate in mice infected with praziquantel non-susceptible isolate of *Schistosoma japonicum. Parasitol Res* 2014a; 113: 925-31.

Wang W, Li HJ, Qu GL, et al. Is there a reduced

sensitivity of dihydroartemisinin against praziquantel-resistant *Schistosoma japonicum? Parasitol Res* 2014b; 113: 223-8.

- Warren KS, Boros DL, Hang LM, Mahmoud AA. The *Schistosoma japonicum* egg granuloma. *Am J Pathol* 1975; 80: 279-94.
- Warren KS, Grove DI, Pelley RP. The *Schistosoma japonicum* egg granuloma. II. Cellular composition, granuloma size, and immunologic concomitants. *Am J Trop Med Hyg* 1978; 27: 271-5.
- Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA. Immunopathology of schistosomiasis. *Immunol Cell Biol* 2007; 85: 148-54.
- Xiao SH, Keiser J, Chen MG, Tanner M, Utzinger J. Research and development of antischistosomal drugs in the People's Republic of China a 60-year review. *Adv Parasitol* 2010; 73: 231-95.