GENETIC DIVERSITY OF *AEDES AEGYPTI* (DIPTERA: CULICIDAE) ISOLATED FROM FIVE CITIES IN NORTH COAST AREA OF CENTRAL JAVA, INDONESIA

Benediktus Yohan¹, Yulvica Fauziah^{1,2}, Sayono Sayono², Hidayat Trimarsanto^{1,3} and R Tedjo Sasmono¹

¹Eijkman Institute for Molecular Biology, Jakarta; ²Faculty of Public Health, Universitas Muhammadiyah Semarang, Semarang; ³The Agency for the Assessment and Application of Technology, Ministry of Research, Technology and Higher Education of the Republic of Indonesia, Jakarta, Indonesia

Abstract. The tropical mosquito Aedes aegypti is the major vector in the transmission of human arboviruses, including chikungunya, dengue and yellow fever viruses. All provinces in the Indonesian archipelago have reported incidences of dengue. In order to study the genetic diversity and the dispersal of *Ae. aegupti* in Central Java, genetic analyses based on mitochondria cytochrome oxidase 1 gene (mtCOI) were performed on Ae. aegypti isolated in five cities along the national North Coast road of Central Java. Seventeen representative mtCOI fragments from either larvae or adult mosquitoes were PCR-amplified, sequenced and analyzed for sequence polymorphism, haplotype and genetic differentiation. A phylogenetic tree was constructed using maximum likelihood method and general time reversible model. There were seven haplotypes and the presence of different haplotypes in the cities was indicative of the heterogeneity of Ae. aegupti in Central Java. Gene flow and genetic differentiation analyses revealed no differentiation among populations from the cities. The possible gene flow between populations may reflect an active dispersal of Ae. aegypti among the cities as a result of movement of traffic along the national North Coast road of Central Java.

Keywords: Aedes aegypti, haplotype, mitochondria COI, Central Java, Indonesia

INTRODUCTION

Aedes (Stegomyia) *aegypti* (L.) is the principal vector for urban yellow fever (YF) and dengue (DENV) viruses. Originating from Africa, this mosquito has expanded geographically throughout the tropical and subtropical regions of

Correspondence: R Tedjo Sasmono, Eijkman Institute for Molecular Biology, Jl Diponegoro 69, Jakarta 10430, Indonesia. Tel: +62 21 3917131; Fax: +62 21 3147982 E-mail: sasmono@eijkman.go.id the world (Gubler, 2011). The species was introduced to Southeast Asia and the Pacific islands during World War II. The dramatic global geographic expansion of this species along with the increase in human population growth, urbanization and globalization have increased the risk for outbreaks of dengue epidemics.

Although there is available dengue vaccine, it is registered for widespread use only in a limited number of Southeast Asian countries (Wichmann *et al*, 2017) and thus, dengue prevention strategy still need to be combined with mosquito vector controls. Control measures should target dengue-competent mosquito populations to interrupt DENV transmission. Knowledge of the genetic structure and gene flow among *Ae. aegypti* populations provides useful clues to help track and even prevent movements of associated genetic traits such as vector competence (Urdaneta-Marquez and Failloux, 2011).

Mitochondrial (mt)DNA is commonly used for molecular evolution studies in insects and has proved to be particularly useful for detecting mosquito genetic divergence and dispersal history (Kambhampati and Rai, 1991; Kambhampati, 1995; Mousson *et al*, 2005). In particular, mitochondrial cytochrome oxidase 1 gene (mt*COI*) has been found useful for genetic studies of *Anopheles* and *Aedes* mosquitoes (Cook *et al*, 2005; Walton *et al*, 2000). Mt-*COI* has also been reported to be useful for DNA barcoding, which complements taxonomy-based identification of mosquito species (Chan *et al*, 2014).

Indonesia has been witnessing a dramatic spread of Ae. aegypti in the archipelago resulting in dengue disease hyperendemicity (Kraemer et al, 2015; Rašić et al, 2015). The four DENV serotypes were shown to be circulating in all provinces of the country (Setiati et al, 2006). The clinical, virology and demographical features of dengue in Semarang, Central Java, and its surrounding regions have previously been reported (Fahri et al, 2013). Here, we investigated the genetic diversity of Ae. aegypti isolated in five cities in coastal areas of Central Java. This should aid in tracking the spread of this dengue virus vector from this region into other areas of Java, which could be facilitated by vehicles using the national North Coast road leading to cities and provinces in Java Island.

MATERIALS AND METHODS

Study sites and sample collection

Mosquito specimens were collected as larvae or reared-adult mosquitoes from five regions/cities along the North Coast part of Central Java, namely, Brebes, Demak, Jepara, Kudus, and Semarang (Fig 1) during August-September 2013. Larvae were collected from artificial water-containers in households surveyed. Identification of *Ae. aegypti* isolates was performed by assessment of morphological features (Chan *et al*, 2014). Collected samples were frozen and stored at -20°C until used.

MtCOI amplification and sequencing

Individual larvae or adult mosquitoes representing each breeding container in each city were macerated using MagNA Lyser Green Beads (Roche, Mannheim, Germany) and 350 µl aliquot of lysis buffer in a MagNA Lyser homogenizer (Roche) at 6,000 rpm for 15 minutes. Following centrifugation (4,000g for 5 minutes), 200 µl aliquot of the homogenate was extracted using MagNA Pure LC DNA Isolation Kit I (Roche) in an automated MagNA Pure LC 2.0 extraction system. DNA in 50 µl of elution buffer was stored at -20°C until used. The 5' segment of mtCOI was PCR amplified as described by Beebe et al (2005). The forward primer (5'-TAGTTCCTTTAATATTAGGAGC -3') was designed to lie 245 bp into the COI 5' region and the reverse primer (5'-TAATATAGCATAAATTATTCC-3') 813 bp into COI, generating a 590-bp COI fragment. PCR mixture (50 µl) contained 10X Expand Hi-fi PCR buffer (Roche), 25 mM MgCl₂ (Promega, Madison, WI), 10 mM dNTP Mix (Promega), Expand High Fidelity DNA polymerase (Roche), and 50-100 ng of DNA template. Thermocycling was conducted in a GeneAmp PCR

System 9700 instrument (Applied Biosystems, Foster City, CA) as follows: initial denaturation step at 95°C for 2 minutes; 40 cycles of 95°C for 30 seconds, 50°C for 1 minute; and 72°C for 1.5 minutes; with final step at 72°C for 10 minutes and storage at 4°C. Amplicons were separated by 2% agarose gel-electrophoresis, visualized by staining with ethidium bromide (EtBr), purified from gel using QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and sequenced in both directions using BigDye Dideoxy Terminator sequencing kits v3.1 (Applied Biosystems) in a 3130xl Genetic Analyzer (Applied Biosystems) at the Eijkman Institute, Jakarta. Sequences were assembled using SeqScape v.2.5 software (Applied Biosystems) with additional manual adjustments when necessary and deposited to GenBank (Table 1).

MtCOI haplotyping and population genetic structure and gene flow analysis

The mtCOI sequences were identified as Ae. aegypti using BOLD Systems origin querying database (Ratnasingham and Hebert, 2007) and then analyzed for polymorphisms and haplotypes. Sequences were grouped according to their collection locations (except for the single sample from Demak) and analyzed for their population genetic structure differentiation and gene flow. Sequence polymorphism analysis, haplotyping, gene flow, and genetic differentiation among populations were performed using DnaSP software v.5.10 (Rozas and Rozas, 1995; Librado and Rozas, 2009). The Fixation index measured by F-statistics (F_{ST}) values were calculated to estimate genetic differentiation between populations. Population differentiation based on differences in allele frequencies were estimated using Nei's G_{ST} values (Nei, 1973). Significant F_{ST} values were analyzed based on the null hypothesis of no differentiation between

populations. The relationship among haplotypes was computed as a distance map based on pairwise difference to generate a minimum spanning tree (MST) and network (MSN) among haplotypes. Distance map data were prepared using Arlequin v.3.5 software (Excoffier and Lischer, 2010). MST and MSN were generated using HapStar v.0.7 (Teacher and Griffiths, 2011).

MtCOI phylogenetic analysis

Multiple sequence alignment was performed using MUSCLE (Edgar, 2004) to generate sequence alignments of the mtCOI fragments with reference sequences downloaded from GenBank. Further editing, trimming and alignment generated sequence alignment lengths of 503 nt. Phylogenetic relationships among specimens were determined using the maximum-likelihood (ML) method employing MEGA5 (Tamura et al, 2011). A test run was performed to identify the best-fit model using jModelTest v.2.1.4 software (Posada, 2009). Trees were inferred using general time reversible (GTR) model with Gamma distributed (4 discrete categories) rates (GTR+G). Branch supports were estimated by bootstrapping with 1,000 replicates.

RESULTS

Seventeen mt*COI* gene sequences obtained from larvae/mosquitoes collected from five cities in the north coastal region of Central Java Province could be divided into seven different haplotypes (Table 1) with 18 sites of nucleotide polymorphisms (Table 2). Two sequences of *Ae. albopictus* samples from Jakarta were used as outgroups. Haplotype H1 was the most predominant haplotype consisting of eight samples from Brebes, Demak, Jepara, Kudus, and Semarang, followed

Southeast Asian J Trop Med Public Health

Table 1
Sample characteristics and mitochondria cytochrome oxidase I gene haplotypes of
Aedes aegypti isolated from five cities in Central Java, Indonesia.

No.	Sample ID	City	Morphology	Morphology GenBank accession No.	
1	ID/BRB/L001	Brebes	Larvae	KP334259	H1
2	ID/BRB/L002	Brebes	Larvae	KP334260	H2
3	ID/BRB/L003	Brebes	Larvae	KP334261	H3
4	ID/BRB/L004	Brebes	Larvae	KP334262	H1
5	ID/DMK/L001	Demak	Larvae	KP334263	H1
6	ID/JPR/L004	Jepara	Larvae	KP334265	H3
7	ID/JPR/A411C4	Jepara	Adult	KP869124	H1
8	ID/JPR/A421C7	Jepara	Adult	KP869125	H1
9	ID/JPR/A431C4	Jepara	Adult	KP869126	H1
10	ID/KDS/L001	Kudus	Larvae	KP334264	H4
11	ID/KDS/A311C1	Kudus	Adult	KP869121	H5
12	ID/KDS/A321C1	Kudus	Adult	KP869122	H6
13	ID/KDS/A331C1	Kudus	Adult	KP869123	H1
14	ID/SMG/A001	Semarang	Adult	KP334266	H1
15	ID/SMG/A003	Semarang	Adult	KP334267	H7
16	ID/SMG/A004	Semarang	Adult	KP334268	H3
17	ID/SMG/A009	Semarang	Adult	KP334269	H3
18	ID/JKT/A001*	Jakarta	Adult	KP334274	Ae. albopictus
19	ID/JKT/A002*	Jakarta	Adult	KP334275	Ae. albopictus

*Used as outgroups.

by haplotype H3, with four isolates from Brebes, Jepara, and Semarang (Fig 1).

Overall haplotype diversity (Hd) for the 17 samples was 0.750 with nucleotide diversity (per site) (π) of 0.00526 and average number of nucleotide differences (κ) of 2.647. Analysis of Hd and π in each city showed the presence of two or more haplotypes, with Kudus having the highest Hd (1.0), κ (6.167), number of segregating sites (S = 12), and π (0.01226) (Table 3). The π value of each city population was relatively low. Tajima's D and Fu and Li's D and F neutrality tests showed low values that are not statistically significant, as is the case with F-statistics (F_S) values (Table 3). Analysis based on F_{ST} values shows no significant differentiation among mosquito populations. Similar profile was observed for G_{ST} values (Table 4).

Haplotype network analysis based on pairwise difference generated an MST and MSN where each mutational step is represented, where the distance matrix among haplotypes showed one or more mutational step(s) for a single common lineage of haplotype H1 (Fig 2). The highest number of mutational steps (n = 8) was observed between haplotype H1 and H5.

Maximum likelihood phylogenetic tree of *Ae. aegypti* mtCOI 503 nt fragments from the five cities along the north coast of Central Java Province revealed clustering of the samples into a single clade with low

Table 2
Mitochondria cytochrome oxidase I gene polymorphisms of Aedes aegypti haplotypes
isolated from five cities in Central Java, Indonesia.

Haplotype	Ν	Nucleotide position																	
		34	45	129	132	133	170	178	185	219	228	306	345	357	363	387	393	399	438
Haplotype 1 (H1)	8	G	G	Т	Т	С	А	А	Т	Т	Т	G	Т	А	Т	С	С	А	А
Haplotype 2 (H2)	1			С	С	А	Т	С											
Haplotype 3 (H3)	4									С									
Haplotype 4 (H4)	1	Т							А	С									
Haplotype 5 (H5)	1										С	А	С	G	С	Т		G	G
Haplotype 6 (H6)	1															Т	Т		
Haplotype 7 (H7)	1		А												С				

N, number of haplotype member.

Table 3Haplotype and nucleotide diversity values and number of segregating sites of Aedesaegypti isolated from four cities in Central Java, Indonesia.

Ν	Н	Hd	κ	π	S	D	D*	F*
4	3	0.833	3.000	0.00596	6	-0.80861	-0.80861	0.731
4	2	0.500	0.500	0.00099	1	-0.61237	-0.61237	0.172
4	4	1.000	6.167	0.01226	12	-0.58365	-0.58365	-0.253
4	3	0.833	1.667	0.00331	3	0.16766	0.16766	-0.133
	N 4 4 4 4 4	N H 4 3 4 2 4 4 4 3	N H Hd 4 3 0.833 4 2 0.500 4 4 1.000 4 3 0.833	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

N, sample size; H, number of haplotypes; Hd, haplotype diversity; π, nucleotide diversity; κ, average number of differences; S, number of segregating sites; D, Tajima's statistics; D*, Fu and Li's D* statistics; F*, Fu and Li's F* statistics.

Table 4
Genetic differentiation between populations of Aedes aegypti isolated from four cities
in Central Java, Indonesia estimated using pairwise genetic distance values.

	Brebes	Jepara	Kudus	Semarang
Brebes	-	-0.08475	-0.02326	-0.05263
Jepara	-0.07692	-	0.04000	0.01538
Kudus	0.00901	0.01235	-	0.01124
Semarang	-0.03704	-0.08333	-0.01075	-

Numbers indicate fixation index values measured as F_{ST} (below diagonal) and G_{ST} (above diagonal).

SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH

Fig 1–Sample collection sites in five cities along the North Coast of Central Java, Indonesia.

bootstrap support (Fig 3). Grouping of the samples into haplotypes could also be observed, with all haplotypes clustered with samples from other countries in Southeast Asia, Africa, Europe (Portugal), and Latin America.

DISCUSSION

Indonesia is one of the tropical countries that is experiencing an increasing incidence of vector-borne infectious diseases, such as dengue and Chikungunya, transmitted by *Aedes* mosquitoes (Yoshikawa and Kusriastuti, 2013). All provinces in the Indonesian archipelago have reported incidences of dengue, including the Central Java Province. Central Java is served by the North Coast Road, which is main route of land transportation and trade across Java Island. This national road is 1,430 km in length, connecting Jakarta, West Java, Central Java, and East Java provinces. Many cities in Central Java Province located along the North Coast Road and the high volume of movements

Fig 2–Minimum spanning tree (MST) and network (MSN) of seven *Aedes aegypti* mitochondria cytochrome oxidase I gene haplotypes from five cities in North Coast of Central Java, Indonesia. MST and MSN were generated using HapStar v.0.7(Teacher and Griffiths, 2011). Black dots along the lines indicate the numbers of mutations between two haplotypes. of humans and goods along the road may aid in the dispersal of *Ae. aegypti* among cities in the region.

Different genetic strains of Aedes can have different colonizing ability and vector competency in transmitting dengue virus (Bennett et al, 2002; Ocampo and Wesson, 2004). As mtCOI has been proven to be a practical tool to study the genetic diversity and spread of Ae. aegupti (Beebe et al. 2005), examination of a fragment of this gene was employed in the study of genetic diversity of Ae. aegypti mosquitoes collected from five cities located in Central Java along the North Coast Road. The most frequent haplotype, H1, was well dispersed geographically among the five cities and served as the single common lineage of *Ae. aegypti* along the north coast of Central Java. However, significant nucleotide differences in certain haplotypes, eg, haplotypes H2 and H5 with 5 and 8 mutations, respectively, might reflect recent introduction of these haplotypes into the region. Cities in the north coast of Central Java are mainly cities with ports, eg, Semarang city that has a large international port. One unique haplotype, H5, showed a close relationship with a sample from Vietnam. The diverse genotypes of *Ae. aegypti* was shown also by the presence of multiple haplotypes in each city. Of particular interest is the genetic diversity of Ae. aegypti in Kudus city that manifested the highest haplotype diversity (Hd) value compared to other four cites, with the presence of four different haplotypes, *ie*, common haplotype H1 and three other unique haplotypes (H4, H5, and H6).

The estimated nucleotide diversity within a city population was low and there was an absence of genetic differentiation between city populations. The Southeast Asian J Trop Med Public Health

0.01

Fig 3–Maximum likelihood tree and haplotype grouping based on mitochondria cytochrome oxidase 1 gene of *Aedes aegypti* isolated from five cities in Central Java, Indonesia. Seventeen samples (red) from the study were analyzed together with reference sequences downloaded from GenBank. Two *Ae. albopictus* isolates (blue) collected from Jakarta were used as outgroups. Bootstrap values of more than 50% are shown. Bar indicates rate of nucleotide substitutions per site. H, haplotype. relatively low F_{ST} values in all five cities might indicate extensive gene flow and migration between mosquito populations among these cities although they are located many kilometers apart. The fact that nucleotide diversity was low in contrast to haplotype diversity may be explained by rapid population growth from ancestral populations (Dantur Juri *et al*, 2014). Taken together, these data showed that *Ae*. *aegypti* dispersal may be aided by movements between cities in Central Java by means of the North Coast road.

The weakness of this study lies in the low number of samples, which might contribute to possible misinterpretation of data leading to ambiguous conclusions. However, the Ae. aegypti mtCOI sequences will be of benefit to the genetic data of Ae. *aegypti* from Indonesia, as to the best of our knowledge, there is only a few mtCOI sequences available in the public database. Information on the genetic makeup of Ae. aegupti will be useful in tracing the introduction of disease-spreading mosquitoes in a particular area, as in the case of Ae. aegypti and Ae. albopictus incursions into Australia (Beebe et al, 2005; Beebe et al, 2013).

In summary, the partial sequences of *Ae. aegypti* mt*COI* isolated from five cities in Central Java has enabled identification of the considerable genetic diversity of this mosquito species in this region of Indonesia. The haplotypes distribution within the studied populations and genetic differentiation between populations depict a dispersal of *Ae. aegypti* mosquitoes between cities, possibly sided by the coast road linking these cities. Further extensive sampling and analysis will be required to verify and add further information on *Ae. aegypti* genetic diversity in Central Java and other provinces in Indonesia.

ACKNOWLEDGEMENTS

The authors thank Ms F Meutiawati, Ms RF Hayati and Mr A Fakhriddinov for their technical assistance, owners of houses surveyed for their cooperation, and the local government authorities for the legal permits to conduct the research.

REFERENCES

- Beebe NW, Ambrose L, Hill LA, *et al.* Tracing the tiger: population genetics provides valuable insights into the *Aedes* (Stegomyia) *albopictus* invasion of the Australasian Region. *PLOS Negl Trop Dis* 2013; 7: e2361.
- Beebe NW, Whelan PI, van den Hurk A, Ritchie S, Cooper RD. Genetic diversity of the dengue vector *Aedes aegypti* in Australia and implications for future surveillance and mainland incursion monitoring. *Commun Dis Intell Q Rep* 2005; 29: 299-304.
- Bennett KE, Olson KE, Muñoz M de L, *et al.* Variation in vector competence for dengue 2 virus among 24 collections of *Aedes aegypti* from Mexico and the United States. *Am J Trop Med Hyg* 2002; 67: 85-92.
- Chan A, Chiang L-P, Hapuarachchi HC, *et al.* DNA barcoding: complementing morphological identification of mosquito species in Singapore. *Parasit Vectors* 2014; 7: 569.
- Cook S, Diallo M, Sall AA, Cooper A, Holmes EC. Mitochondrial markers for molecular identification of Aedes mosquitoes (Diptera: Culicidae) involved in transmission of arboviral disease in West Africa. *J Med Entomol* 2005; 42: 19-28.
- Dantur Juri MJ, Moreno M, Prado Izaguirre MJ, et al. Demographic history and population structure of *Anopheles pseudopunctipennis* in Argentina based on the mitochondrial COI gene. *Parasit Vectors* 2014; 7: 423.
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 2004; 32: 1792-7.

- Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Mol Ecol Resour* 2010; 10: 564-7.
- Fahri S, Yohan B, Trimarsanto H, *et al.* Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an old genotype of dengue virus serotype-1. *PLOS Negl Trop Dis* 2013; 7: e2354.
- Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21st Century. *Trop Med Health* 2011; 39(4 Suppl): 3-11.
- Kambhampati S. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. *Proc Natl Acad Sci USA* 1995; 92: 2017-20.
- Kambhampati S, Rai KS. Mitochondrial DNA variation within and among populations of the mosquito *Aedes albopictus*. *Genome* 1991; 34: 288-92.
- Kraemer MUG, Sinka ME, Duda KA, *et al*. The global distribution of the arbovirus vectors *Aedes aegypti* and *Ae. albopictus*. *Elife* 2015; 4: e08347.
- Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 2009; 25: 1451-2.
- Mousson L, Dauga C, Garrigues T, et al. Phylogeography of *Aedes* (Stegomyia) *aegypti* (L.) and *Aedes* (Stegomyia) *albopictus* (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. *Genet Res* 2005; 86: 1-11.
- Nei M. Analysis of gene diversity in subdivided populations. *Proc Natl Acad Sci USA* 1973; 70: 3321-3.
- Ocampo CB, Wesson DM. Population dynamics of *Aedes aegypti* from a dengue hyperendemic urban setting in Colombia. *Am J Trop Med Hyg* 2004; 71: 506-13.
- Posada D. Selection of models of DNA evolution with jModelTest. *Methods Mol Biol* 2009; 537: 93-112.

- Rašić G, Endersby-Harshman N, Tantowijoyo W, et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. *Parasit Vectors* 2015; 8: 610.
- Ratnasingham S, Hebert PDN. bold: The Barcode of Life Data System (<u>http://www. barcodinglife.org</u>). *Mol Ecol Notes* 2007; 7: 355-64.
- Rozas J, Rozas R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. *Comput Appl Biosci* 1995; 11: 621-5.
- Setiati TE, Wagenaar JF, de Kruif MD, *et al.* Changing epidemiology of dengue haemorrhagic fever in Indonesia. *Bull World Health Organ* 2006; 30: 1-14.
- Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 2011; 28: 2731-9.
- Teacher AGF, Griffiths DJ. HapStar: automated haplotype network layout and visualization. *Mol Ecol Resour* 2011; 11: 151-3.
- Urdaneta-Marquez L, Failloux A-B. Population genetic structure of *Aedes aegypti*, the principal vector of dengue viruses. *Infect Genet Evol* 2011; 11: 253-61.
- Walton C, Handley JM, Tun-Lin W, et al. Population structure and population history of *Anopheles dirus* mosquitoes in Southeast Asia. *Mol Biol Evol* 2000; 17: 962-74.
- Wichmann O, Vannice K, Asturias EJ, et al. Liveattenuated tetravalent dengue vaccines: The needs and challenges of post-licensure evaluation of vaccine safety and effectiveness. *Vaccine* 2017; 35: 5535-42.
- Yoshikawa MJ, Kusriastuti R. Surge of dengue virus infection and chikungunya fever in Bali in 2010: the burden of mosquito-borne infectious diseases in a tourist destination. *Trop Med Health* 2013; 41: 67-78.