

	_
-1	

Key foodborne disease-causing organisms and disease (WHO, 2010)

Hazard DIARRHOEAL DISEASE AGENTS	Disease
Campylobacter spp.	Diarrhoeal disease/ Guillian-Barre syndrome
Enteropathogenic Escherichia coli	Diarrhoeal disease
Enterotoxigenic <i>E. coli</i>	Diarrhoeal disease
Shiga toxin-producing E. coli	Diarrhoeal disease
Noroviruses	Diarrhoeal disease
Non-typhoidal <i>S. enterica</i>	Diarrhoeal disease/ Invasive salmonellosis
Shigella spp.	Diarrhoeal disease
Vibrio cholerae	Diarrhoeal disease
Entamoeba histolytica	Diarrhoeal disease
Giardia spp.	Diarrhoeal disease
	Л

Koy foodborne disease-causi	Mahidol University Faculty of Tropical Medicine
Hazard	Disease
INVASIVE INFECTIOUS DISEASE AG	GENTS
Hepatitis A virus	Hepatitis
Brucella spp.	Acute brucellosis/ Chronic brucellosis/ Orchitis
Listeria monocytogenes, perinatal	Sepsis/ CNS infection/ Neurological sequelae
Listeria monocytogenes, acquired	Sepsis/ CNS infection/ Neurological sequelae
Mycobacterium bovis	Tuberculosis
Salmonella Paratyphi	Paratyphoid fever/ Liver abscesses and cysts
Salmonella Typhi	Typhoid fever/ Liver abscesses and cysts
<i>Toxoplasma gondii,</i> congenital	Intracranial calcification/ Hydrocephalus
	Chorioretinitis, early in life, later in life
	CNS abnormalities
	20 February 2020

ley loodborne disease-causin	ig organisms and disease (WHO, 20
Hazard	Disease
<i>Toxoplasma qondii</i> , acquired	Chorioretinitis, mild, moderate, severe
, , , , , , , , , , , , , , , , , , , ,	Acute illness/ Post-acute illness
ENTERIC INTOXICATIONS	
Bacillus cereus	Acute intoxication
Clostridium botulinum	Moderate/ mild botulism/ Severe
	Botulism
Clostridium perfringen	Acute intoxication
Staphylococcus aureus	Acute intoxication
Trichinella spp.	Acute clinical trichinellosis

Key foodborne disease-causing	g organisms and disease (WHO, 2010)
Hazard CESTODES	Disease
<i>Echinococcus granulosus</i> , causes seeking treatment	Pulmonary cystic echinococcosis Hepatis cystic echinococcus CNS cystic echinococcus
<i>Echinococcus granulosus</i> , causes not seeking treatment	Pulmonary cystic echinococcosis Hepatis cystic echinococcus CNS cystic echinococcus
Echinococcus multilocularis	Alveolar echinococcosis
Taenia solium	Epilepsy: treated, seizure free Epilepsy, treated with recent seizures
NEMAIODES	Acceriacia infectation
Ascaris spp.	Ascarlasis infestation Mild abdominopelvic problems
Trichinella spp.	Acute clinical trichinellosis

Key foodborne disease-causing organisms and disease (WHO, 2010)

Clonorchis sinensisAbdominopelvic problems due to heavy clonorchiosFasciola spp.Abdominopelvic problems due to heavy fasciolosisIntertinal flukesAbdominopelvic problems due to heavy intestinal fluinfections	is
Fasciola spp.Abdominopelvic problems due to heavy fasciolosisIntertinal flukesAbdominopelvic problems due to heavy intestinal fluininfectionsAbdominopelvic problems due to heavy intestinal fluin	1
Intertinal flukes Abdominopelvic problems due to heavy intestinal fluin infections	
	ıke
<i>Opisthorchis spp.</i> Abdominopelvic problems due to heavy opisthorchic	osis
Paragonimus spp. Abdominopelvic problems due to heavy paragonimic	osis
Pulmonary problems due to heavy paragonimosis	

Mahidol University Incidence of foodborne diseases Faculty of Tropical Medicine The burden of foodborne diseases is substantial Every year foodborne diseases cause: **33** million almost 1 in 10 📣 Healthy life years lost People to fall ill Foodborne diseases can be deadly, especially in Children <5 Children account for 1/3420 000 of death from food diseases death FOODBORNE DISEASES ARE PREVENTABLE. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015.

Control FB and WB diseases

Control FB and WB diseases

Precise identify and tracking disease

Strengthening food safety

Surveillance

FOOD
SAFETY

ADVANCED
MOLECULAR
DETECTION

INNOVATION

Mahidol University Faculty of Tropical Medicine

Whole genome sequencing (WGS)

Rapid and precise identification of the bacteria causing foodborne illness is critical for timely foodborne outbreak response.

GIVES AN EXACT DNA PROFILE OF FOODBORNE PATHOGENS & OUTBREAKS.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

Histological appearances of Kidney sections

Humanized ScFv to LipL32 treatment

Interstitial nephritis (A; 200x) with mononuclear cells infiltrated in interstitial blood vessel (B; 1000x) were observed.

Adapt from Maneewatchararangsri, S (2007). Citation: Maneewatchararangsri, S (2007). Humanized-monoclonal antibody that neutralizes heterologous *Leptospira* infection. (Doctoral dissertation) Thammasat University Thailand.

101

Histological appearances of Kidney sections

Mahidol University Faculty of Tropical Medicine

• Humanized ScFv to LipL32

Glomerulonephritis with a few mononuclear cells (arrows) and glomerular basement membrane degenerated (arrow head) were observed (1000x).

Adapt from Maneewatchararangsri, S (2007).

Citation: Maneewatchararangsri, S (2007). Humanized-monoclonal antibody that neutralizes heterologous *Leptospira* infection. (Doctoral dissertation) Thammasat University Thailand.

Histological appearances of Kidney sections

• Humanized ScFv to LipL32

Chronic interstitial nephritis with slight fibrosis was observed. Mononuclear cells infiltrated in fibrous tissue and interstitial blood vessels were found (400x).

Adapt from Maneewatchararangsri, S (2007).

Citation: Maneewatchararangsri, S (2007). Humanized-monoclonal antibody that neutralizes heterologous *Leptospira* infection. (Doctoral dissertation) Thammasat University Thailand.

103

Citation: Maneewatchararangsri, S (2007). Humanized-monoclonal antibody that neutralizes heterologous *Leptospira* infection. (Doctoral dissertation) Thammasat University Thailand.

Histological appearances of Lung sections

Humanized ScFv to LipL32

Numerous neutrophils (arrows) were found in blood vessel with red blood cells hemolysis (400x).

Adapt from Maneewatchararangsri, S (2007).

Citation: Maneewatchararangsri, S (2007). Humanized-monoclonal antibody that neutralizes heterologous *Leptospira* infection. (Doctoral dissertation) Thammasat University Thailand.

105

Citation: Maneewatchararangsri, S (2007). Humanized-monoclonal antibody that neutralizes heterologous *Leptospira* infection. (Doctoral dissertation) Thammasat University Thailand.

